Gravitationally Mediated Entanglement with Superpositions of Rotational
Energies
- URL: http://arxiv.org/abs/2403.02062v1
- Date: Mon, 4 Mar 2024 14:05:36 GMT
- Title: Gravitationally Mediated Entanglement with Superpositions of Rotational
Energies
- Authors: Gerard Higgins, Andrea Di Biagio, Marios Christodoulou
- Abstract summary: Experimental proposals for testing quantum gravity-induced entanglement of masses (QGEM) typically involve two interacting masses which are each in a spatial superposition state.
Here, we propose a QGEM experiment with two particles which are each in a superposition of rotational states, this amounts to a superposition of mass through mass-energy equivalence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Experimental proposals for testing quantum gravity-induced entanglement of
masses (QGEM) typically involve two interacting masses which are each in a
spatial superposition state. Here, we propose a QGEM experiment with two
particles which are each in a superposition of rotational states, this amounts
to a superposition of mass through mass-energy equivalence. Our proposal relies
on the fact that rotational energy gravitates. This approach would test a
feature unique to gravity since it amounts to sourcing a spacetime in
superposition due to a superposition of 'charge'. We propose and analyse a
concrete experimental protocol and discuss challenges.
Related papers
- Entanglement Dynamics in Quantum Continuous-Variable States [2.480301925841752]
Gravitation between two quantum masses is one of the most straightforward scenarios where quantum features of gravity could be observed.
This thesis introduces general tools to tackle interaction-mediated entanglement and applies them to two particles prepared in continuous-variable states.
arXiv Detail & Related papers (2024-05-12T19:21:21Z) - Large Spin Stern-Gerlach Interferometry for Gravitational Entanglement [0.0]
A proposal to test the quantum nature of gravity in the laboratory is presented.
Two masses in spatial quantum superpositions are left to interact via gravity, and the entanglement is computed.
We find that larger spins can offer a modest advantage in enhancing gravity-induced entanglement.
arXiv Detail & Related papers (2023-12-08T16:50:19Z) - Gravity-induced entanglement between two massive microscopic particles in curved spacetime: I.The Schwarzschild background [2.915799083273604]
The gravitational field within curved spacetime can induce observable entanglement between particle pairs in both scenarios.
This approach establishes a more pronounced and extensive manifestation of the quantum influences of gravity.
These experiments hold immense advantages and implications for the detection of quantum gravity.
arXiv Detail & Related papers (2023-08-31T08:16:43Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Quantum entanglement of masses with non-local gravitational interaction [0.0]
We consider an energy-momentum tensor describing two test particles of equal mass with each possessing some non-zero momentum.
We find that the change in the gravitational energy due to the self-interaction terms is finite.
We study the quantum gravity induced entanglement of masses for two different scenarios.
arXiv Detail & Related papers (2023-03-30T18:14:28Z) - Does the Universe have its own mass? [62.997667081978825]
The mass of the universe is a distribution of non-zero values of gravitational constraints.
A formulation of the Euclidean quantum theory of gravity is also proposed to determine the initial state.
Being unrelated to ordinary matter, the distribution of its own mass affects the geometry of space.
arXiv Detail & Related papers (2022-12-23T22:01:32Z) - Conditions for graviton emission in the recombination of a delocalized
mass [91.3755431537592]
In a known gedanken experiment, a delocalized mass is recombined while the gravitational field sourced by it is probed by another (distant) particle.
Here, we focus on the delocalized particle and explore the conditions (in terms of mass, separation, and recombination time) for graviton emission.
arXiv Detail & Related papers (2022-09-21T13:51:27Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Atom-interferometric test of the universality of gravitational redshift
and free fall [48.82541018696971]
Light-pulse atom interferometers constitute powerful quantum sensors for inertial forces.
We present a specific geometry which together with state transitions leads to a scheme that is sensitive to both violations of the universality of free fall and gravitational redshift.
arXiv Detail & Related papers (2020-01-27T13:35:30Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.