Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
- URL: http://arxiv.org/abs/2403.02311v3
- Date: Thu, 27 Jun 2024 08:21:51 GMT
- Title: Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
- Authors: Yidong Zhao, Joao Tourais, Iain Pierce, Christian Nitsche, Thomas A. Treibel, Sebastian Weingärtner, Artur M. Schweidtmann, Qian Tao,
- Abstract summary: Deep learning methods have achieved state-of-theart performance for many medical image segmentation tasks.
Recent studies show that deep neural networks (DNNs) can be miscalibrated and overconfident, leading to "silent failures"
We propose a Bayesian learning framework using Hamiltonian Monte Carlo (HMC), tempered by cold posterior (CP) to accommodate medical data augmentation.
- Score: 3.0665936758208447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning (DL)-based methods have achieved state-of-the-art performance for many medical image segmentation tasks. Nevertheless, recent studies show that deep neural networks (DNNs) can be miscalibrated and overconfident, leading to "silent failures" that are risky for clinical applications. Bayesian DL provides an intuitive approach to DL failure detection, based on posterior probability estimation. However, the posterior is intractable for large medical image segmentation DNNs. To tackle this challenge, we propose a Bayesian learning framework using Hamiltonian Monte Carlo (HMC), tempered by cold posterior (CP) to accommodate medical data augmentation, named HMC-CP. For HMC computation, we further propose a cyclical annealing strategy, capturing both local and global geometries of the posterior distribution, enabling highly efficient Bayesian DNN training with the same computational budget as training a single DNN. The resulting Bayesian DNN outputs an ensemble segmentation along with the segmentation uncertainty. We evaluate the proposed HMC-CP extensively on cardiac magnetic resonance image (MRI) segmentation, using in-domain steady-state free precession (SSFP) cine images as well as out-of-domain datasets of quantitative T1 and T2 mapping. Our results show that the proposed method improves both segmentation accuracy and uncertainty estimation for in- and out-of-domain data, compared with well-established baseline methods such as Monte Carlo Dropout and Deep Ensembles. Additionally, we establish a conceptual link between HMC and the commonly known stochastic gradient descent (SGD) and provide general insight into the uncertainty of DL. This uncertainty is implicitly encoded in the training dynamics but often overlooked. With reliable uncertainty estimation, our method provides a promising direction toward trustworthy DL in clinical applications.
Related papers
- Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation [1.2873975765521795]
This work applied the Mahalanobis distance (MD) post hoc to the bottleneck features of four Swin UNETR and nnU-net models that segmented the liver.
Images the models failed on were detected with high performance and minimal computational load.
arXiv Detail & Related papers (2024-08-05T18:24:48Z) - Deep Bayesian segmentation for colon polyps: Well-calibrated predictions in medical imaging [0.0]
We build different Bayesian neural network approaches to develop semantic segmentation of colorectal polyp images.
We found that these models not only provide state-of-the-art performance on the segmentation of this medical dataset but also, yield accurate uncertainty estimates.
arXiv Detail & Related papers (2024-07-23T16:13:27Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
This paper introduces a new Bayesian deep learning framework for uncertainty quantification in segmentation neural networks.
We evaluate the proposed framework on medical image segmentation data from Magnetic Resonances Imaging and Computed Tomography scans.
Our experiments on multiple benchmark datasets demonstrate that the proposed framework is more robust to noise and adversarial attacks as compared to state-of-the-art segmentation models.
arXiv Detail & Related papers (2021-11-10T22:46:05Z) - Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical
Image Segmentation [92.9634065964963]
We present a new semi-supervised segmentation model, namely, conservative-radical network (CoraNet) based on our uncertainty estimation and separate self-training strategy.
Compared with the current state of the art, our CoraNet has demonstrated superior performance.
arXiv Detail & Related papers (2021-10-17T08:49:33Z) - Differentially private training of neural networks with Langevin
dynamics forcalibrated predictive uncertainty [58.730520380312676]
We show that differentially private gradient descent (DP-SGD) can yield poorly calibrated, overconfident deep learning models.
This represents a serious issue for safety-critical applications, e.g. in medical diagnosis.
arXiv Detail & Related papers (2021-07-09T08:14:45Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Uncertainty Estimation in Medical Image Localization: Towards Robust
Anterior Thalamus Targeting for Deep Brain Stimulation [11.910765921234333]
We propose a novel two-stage deep learning (DL) framework to improve the localization robustness.
The first stage identifies and crops the thalamus regions from the whole brain MRI.
The second stage performs per-voxel regression on the cropped volume to localize the targets at the finest resolution scale.
arXiv Detail & Related papers (2020-11-03T23:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.