Digital Twins and Civil Engineering Phases: Reorienting Adoption Strategies
- URL: http://arxiv.org/abs/2403.02426v2
- Date: Wed, 7 Aug 2024 16:20:56 GMT
- Title: Digital Twins and Civil Engineering Phases: Reorienting Adoption Strategies
- Authors: Taiwo A. Adebiyi, Nafeezat A. Ajenifuja, Ruda Zhang,
- Abstract summary: Digital twin (DT) technology has received immense attention over the years due to the promises it presents to various stakeholders in science and engineering.
We present a phase-based development of DT in the Architecture, Engineering, and Construction industry.
- Score: 2.94944680995069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital twin (DT) technology has received immense attention over the years due to the promises it presents to various stakeholders in science and engineering. As a result, different thematic areas of DT have been explored. This is no different in specific fields such as manufacturing, automation, oil and gas, and civil engineering, leading to fragmented approaches for field-specific applications. The civil engineering industry is further disadvantaged in this regard as it relies on external techniques by other engineering fields for its DT adoption. A rising consequence of these extensions is a concentrated application of DT to the operations and maintenance phase. On another spectrum, Building Information Modeling (BIM) is pervasively utilized in the planning/design phase, and the transient nature of the construction phase remains a challenge for its DT adoption. In this paper, we present a phase-based development of DT in the Architecture, Engineering, and Construction industry. We commence by presenting succinct expositions on DT as a concept and as a service, and establish a five-level scale system. Furthermore, we present separately a systematic literature review of the conventional techniques employed at each civil engineering phase. In this regard, we identified enabling technologies such as computer vision for extended sensing and the Internet of Things for reliable integration. Ultimately, we attempt to reveal DT as an important tool across the entire life cycle of civil engineering projects, and nudge researchers to think more holistically in their quest for the integration of DT for civil engineering applications.
Related papers
- Digital Twins in Additive Manufacturing: A Systematic Review [0.4218593777811082]
Digital Twins (DTs) are becoming popular in Additive Manufacturing (AM)
Advanced techniques such as Machine Learning (ML), Augmented Reality (AR), and simulation-based models play key roles in developing DTs.
arXiv Detail & Related papers (2024-09-02T00:11:48Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Towards an Extensible Model-Based Digital Twin Framework for Space Launch Vehicles [12.153961316909852]
The concept of Digital Twin (DT) is increasingly applied to systems on different levels of abstraction across domains.
The definition of DT is unclear, neither is there a clear pathway to develop DT to fully realise its capacities.
We propose a DT maturity matrix, based on which we propose a model-based DT development methodology.
arXiv Detail & Related papers (2024-06-04T11:31:00Z) - IPAD: Industrial Process Anomaly Detection Dataset [71.39058003212614]
Video anomaly detection (VAD) is a challenging task aiming to recognize anomalies in video frames.
We propose a new dataset, IPAD, specifically designed for VAD in industrial scenarios.
This dataset covers 16 different industrial devices and contains over 6 hours of both synthetic and real-world video footage.
arXiv Detail & Related papers (2024-04-23T13:38:01Z) - Multi-Tier Computing-Enabled Digital Twin in 6G Networks [50.236861239246835]
In Industry 4.0, industries such as manufacturing, automotive, and healthcare are rapidly adopting DT-based development.
The main challenges to date have been the high demands on communication and computing resources, as well as privacy and security concerns.
To achieve low latency and high security services in the emerging DT, multi-tier computing has been proposed by combining edge/fog computing and cloud computing.
arXiv Detail & Related papers (2023-12-28T13:02:53Z) - Current Trends in Digital Twin Development, Maintenance, and Operation: An Interview Study [0.2871849986181679]
Digital twins (DT) are often defined as a pairing of a physical entity and a corresponding virtual entity (VE)
We performed a semi-structured interview research with 19 professionals from industry and academia who are closely associated with different lifecycle stages of digital twins.
arXiv Detail & Related papers (2023-06-16T12:19:28Z) - Enabling Spatial Digital Twins: Technologies, Challenges, and Future
Research Directions [13.210510790794006]
A Digital Twin (DT) is a virtual replica of a physical object or system, created to monitor, analyze, and optimize its behavior and characteristics.
A Spatial Digital Twin (SDT) is a specific type of digital twin that emphasizes the geospatial aspects of the physical entity.
We are the first to systematically analyze different spatial technologies relevant to building an SDT in layered approach.
arXiv Detail & Related papers (2023-06-11T06:28:44Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Digital Twin: From Concept to Practice [1.3633989508250934]
This paper proposes a framework to help practitioners select an appropriate level of sophistication in a Digital Twin.
Three real-life case studies illustrate the application and usefulness of the framework.
arXiv Detail & Related papers (2022-01-14T17:41:26Z) - Digital Twins: State of the Art Theory and Practice, Challenges, and
Open Research Questions [62.67593386796497]
This work explores the various DT features and current approaches, the shortcomings and reasons behind the delay in the implementation and adoption of digital twin.
The major reasons for this delay are the lack of a universal reference framework, domain dependence, security concerns of shared data, reliance of digital twin on other technologies, and lack of quantitative metrics.
arXiv Detail & Related papers (2020-11-02T19:08:49Z) - Data-Driven Aerospace Engineering: Reframing the Industry with Machine
Learning [49.367020832638794]
The aerospace industry is poised to capitalize on big data and machine learning.
Recent trends will be explored in context of critical challenges in design, manufacturing, verification and services.
arXiv Detail & Related papers (2020-08-24T22:40:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.