Digital Twin: From Concept to Practice
- URL: http://arxiv.org/abs/2201.06912v1
- Date: Fri, 14 Jan 2022 17:41:26 GMT
- Title: Digital Twin: From Concept to Practice
- Authors: Ashwin Agrawal, Martin Fischer, Vishal Singh
- Abstract summary: This paper proposes a framework to help practitioners select an appropriate level of sophistication in a Digital Twin.
Three real-life case studies illustrate the application and usefulness of the framework.
- Score: 1.3633989508250934
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent technological developments and advances in Artificial Intelligence
(AI) have enabled sophisticated capabilities to be a part of Digital Twin (DT),
virtually making it possible to introduce automation into all aspects of work
processes. Given these possibilities that DT can offer, practitioners are
facing increasingly difficult decisions regarding what capabilities to select
while deploying a DT in practice. The lack of research in this field has not
helped either. It has resulted in the rebranding and reuse of emerging
technological capabilities like prediction, simulation, AI, and Machine
Learning (ML) as necessary constituents of DT. Inappropriate selection of
capabilities in a DT can result in missed opportunities, strategic
misalignments, inflated expectations, and risk of it being rejected as just
hype by the practitioners. To alleviate this challenge, this paper proposes the
digitalization framework, designed and developed by following a Design Science
Research (DSR) methodology over a period of 18 months. The framework can help
practitioners select an appropriate level of sophistication in a DT by weighing
the pros and cons for each level, deciding evaluation criteria for the digital
twin system, and assessing the implications of the selected DT on the
organizational processes and strategies, and value creation. Three real-life
case studies illustrate the application and usefulness of the framework.
Related papers
- Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Learning Paradigms and Modelling Methodologies for Digital Twins in Process Industry [1.1060425537315088]
Digital Twins (DTs) are virtual replicas of physical manufacturing systems that combine sensor data with sophisticated data-based or physics-based models, or a combination thereof, to tackle a variety of industrial-relevant tasks like process monitoring, predictive control or decision support.
The backbone of a DT, i.e. the concrete modelling methodologies and architectural frameworks supporting these models, are complex, diverse and evolve fast, necessitating a thorough understanding of the latest state-of-the-art methods and trends to stay on top of a highly competitive market.
arXiv Detail & Related papers (2024-07-02T14:05:10Z) - Constructing and Evaluating Digital Twins: An Intelligent Framework for DT Development [11.40908718824589]
Development of Digital Twins (DTs) represents a transformative advance for simulating and optimizing complex systems in a controlled digital space.
This paper introduces an intelligent framework for the construction and evaluation of DTs, specifically designed to enhance the accuracy and utility of DTs in testing algorithmic performance.
We propose a novel construction methodology that integrates deep learning-based policy gradient techniques to dynamically tune the DT parameters, ensuring high fidelity in the digital replication of physical systems.
arXiv Detail & Related papers (2024-06-19T01:45:18Z) - Multi-Tier Computing-Enabled Digital Twin in 6G Networks [50.236861239246835]
In Industry 4.0, industries such as manufacturing, automotive, and healthcare are rapidly adopting DT-based development.
The main challenges to date have been the high demands on communication and computing resources, as well as privacy and security concerns.
To achieve low latency and high security services in the emerging DT, multi-tier computing has been proposed by combining edge/fog computing and cloud computing.
arXiv Detail & Related papers (2023-12-28T13:02:53Z) - Digital Twin Framework for Optimal and Autonomous Decision-Making in
Cyber-Physical Systems: Enhancing Reliability and Adaptability in the Oil and
Gas Industry [0.0]
This work proposes a digital twin framework for optimal and autonomous decision-making applied to a gas-lift process in the oil and gas industry.
The framework combines Bayesian inference, Monte Carlo simulations, transfer learning, online learning, and novel strategies to confer cognition to the DT.
arXiv Detail & Related papers (2023-11-21T18:02:52Z) - Rethinking Decision Transformer via Hierarchical Reinforcement Learning [54.3596066989024]
Decision Transformer (DT) is an innovative algorithm leveraging recent advances of the transformer architecture in reinforcement learning (RL)
We introduce a general sequence modeling framework for studying sequential decision making through the lens of Hierarchical RL.
We show DT emerges as a special case of this framework with certain choices of high-level and low-level policies, and discuss the potential failure of these choices.
arXiv Detail & Related papers (2023-11-01T03:32:13Z) - Enabling Spatial Digital Twins: Technologies, Challenges, and Future
Research Directions [13.210510790794006]
A Digital Twin (DT) is a virtual replica of a physical object or system, created to monitor, analyze, and optimize its behavior and characteristics.
A Spatial Digital Twin (SDT) is a specific type of digital twin that emphasizes the geospatial aspects of the physical entity.
We are the first to systematically analyze different spatial technologies relevant to building an SDT in layered approach.
arXiv Detail & Related papers (2023-06-11T06:28:44Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Learning Neuro-Symbolic Skills for Bilevel Planning [63.388694268198655]
Decision-making is challenging in robotics environments with continuous object-centric states, continuous actions, long horizons, and sparse feedback.
Hierarchical approaches, such as task and motion planning (TAMP), address these challenges by decomposing decision-making into two or more levels of abstraction.
Our main contribution is a method for learning parameterized polices in combination with operators and samplers.
arXiv Detail & Related papers (2022-06-21T19:01:19Z) - Digital Twin in Practice: Emergent Insights from an ethnographic-action
research study [0.9768248031724482]
This paper reports some of the stumbling blocks that practitioners face while deploying a Digital Twin in practice.
The case study led to uncovering the roadblocks in practice faced by the Architecture, Engineering, and Construction (AEC) practitioners.
arXiv Detail & Related papers (2022-03-08T19:03:22Z) - Digital Twins: State of the Art Theory and Practice, Challenges, and
Open Research Questions [62.67593386796497]
This work explores the various DT features and current approaches, the shortcomings and reasons behind the delay in the implementation and adoption of digital twin.
The major reasons for this delay are the lack of a universal reference framework, domain dependence, security concerns of shared data, reliance of digital twin on other technologies, and lack of quantitative metrics.
arXiv Detail & Related papers (2020-11-02T19:08:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.