Towards an Extensible Model-Based Digital Twin Framework for Space Launch Vehicles
- URL: http://arxiv.org/abs/2406.02222v1
- Date: Tue, 4 Jun 2024 11:31:00 GMT
- Title: Towards an Extensible Model-Based Digital Twin Framework for Space Launch Vehicles
- Authors: Ran Wei, Ruizhe Yang, Shijun Liu, Chongsheng Fan, Rong Zhou, Zekun Wu, Haochi Wang, Yifan Cai, Zhe Jiang,
- Abstract summary: The concept of Digital Twin (DT) is increasingly applied to systems on different levels of abstraction across domains.
The definition of DT is unclear, neither is there a clear pathway to develop DT to fully realise its capacities.
We propose a DT maturity matrix, based on which we propose a model-based DT development methodology.
- Score: 12.153961316909852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The concept of Digital Twin (DT) is increasingly applied to systems on different levels of abstraction across domains, to support monitoring, analysis, diagnosis, decision making and automated control. Whilst the interest in applying DT is growing, the definition of DT is unclear, neither is there a clear pathway to develop DT to fully realise its capacities. In this paper, we revise the concept of DT and its categorisation. We propose a DT maturity matrix, based on which we propose a model-based DT development methodology. We also discuss how model-based tools can be used to support the methodology and present our own supporting tool. We report our preliminary findings with a discussion on a case study, in which we use our proposed methodology and our supporting tool to develop an extensible DT platform for the assurance of Electrical and Electronics systems of space launch vehicles.
Related papers
- Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Learning Paradigms and Modelling Methodologies for Digital Twins in Process Industry [1.1060425537315088]
Digital Twins (DTs) are virtual replicas of physical manufacturing systems that combine sensor data with sophisticated data-based or physics-based models, or a combination thereof, to tackle a variety of industrial-relevant tasks like process monitoring, predictive control or decision support.
The backbone of a DT, i.e. the concrete modelling methodologies and architectural frameworks supporting these models, are complex, diverse and evolve fast, necessitating a thorough understanding of the latest state-of-the-art methods and trends to stay on top of a highly competitive market.
arXiv Detail & Related papers (2024-07-02T14:05:10Z) - Constructing and Evaluating Digital Twins: An Intelligent Framework for DT Development [11.40908718824589]
Development of Digital Twins (DTs) represents a transformative advance for simulating and optimizing complex systems in a controlled digital space.
This paper introduces an intelligent framework for the construction and evaluation of DTs, specifically designed to enhance the accuracy and utility of DTs in testing algorithmic performance.
We propose a novel construction methodology that integrates deep learning-based policy gradient techniques to dynamically tune the DT parameters, ensuring high fidelity in the digital replication of physical systems.
arXiv Detail & Related papers (2024-06-19T01:45:18Z) - Demystifying Digital Twin Buzzword: A Novel Generic Evaluation Model [0.0]
Despite the growing popularity of digital twins (DT) developments, there is a lack of common understanding and definition for important concepts of DT.
This article proposes a four-dimensional evaluation framework to assess the maturity of digital twins across different domains.
arXiv Detail & Related papers (2023-11-21T19:56:26Z) - A Taxonomy of Decentralized Identifier Methods for Practitioners [50.76687001060655]
A core part of the new identity management paradigm of Self-Sovereign Identity (SSI) is the W3C Decentralized Identifiers (DIDs) standard.
We propose a taxonomy of DID methods with the goal to empower practitioners to make informed decisions when selecting DID methods.
arXiv Detail & Related papers (2023-10-18T13:01:40Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
In this paper, we propose an inherently interpretable method, named Transferable Prototype Learning ( TCPL)
To achieve this goal, we design a hierarchically prototypical module that transfers categorical basic concepts from the source domain to the target domain and learns domain-shared prototypes for explaining the underlying reasoning process.
Comprehensive experiments show that the proposed method can not only provide effective and intuitive explanations but also outperform previous state-of-the-arts.
arXiv Detail & Related papers (2023-10-12T06:36:41Z) - A New Era of Mobility: Exploring Digital Twin Applications in Autonomous
Vehicular Systems [0.0]
Digital twins (DTs) are virtual representations of physical objects or processes that can collect information from the real environment to represent, validate, and replicate the physical twin's present and future behavior.
DTs are becoming increasingly prevalent in a variety of fields, including manufacturing, automobiles, medicine, smart cities, and other related areas.
We addressed DTs and their essential characteristics, emphasized on accurate data collection, real-time analytics, and efficient simulation capabilities, while highlighting their role in enhancing performance and reliability.
arXiv Detail & Related papers (2023-05-09T06:39:57Z) - Digital Twin: From Concept to Practice [1.3633989508250934]
This paper proposes a framework to help practitioners select an appropriate level of sophistication in a Digital Twin.
Three real-life case studies illustrate the application and usefulness of the framework.
arXiv Detail & Related papers (2022-01-14T17:41:26Z) - Digital Twins: State of the Art Theory and Practice, Challenges, and
Open Research Questions [62.67593386796497]
This work explores the various DT features and current approaches, the shortcomings and reasons behind the delay in the implementation and adoption of digital twin.
The major reasons for this delay are the lack of a universal reference framework, domain dependence, security concerns of shared data, reliance of digital twin on other technologies, and lack of quantitative metrics.
arXiv Detail & Related papers (2020-11-02T19:08:49Z) - Pontryagin Differentiable Programming: An End-to-End Learning and
Control Framework [108.4560749465701]
The Pontryagin Differentiable Programming methodology establishes a unified framework to solve a broad class of learning and control tasks.
We investigate three learning modes of the PDP: inverse reinforcement learning, system identification, and control/planning.
We demonstrate the capability of the PDP in each learning mode on different high-dimensional systems, including multi-link robot arm, 6-DoF maneuvering quadrotor, and 6-DoF rocket powered landing.
arXiv Detail & Related papers (2019-12-30T15:35:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.