Density-based Isometric Mapping
- URL: http://arxiv.org/abs/2403.02531v1
- Date: Mon, 4 Mar 2024 22:51:51 GMT
- Title: Density-based Isometric Mapping
- Authors: Bardia Yousefi, M\'elina Khansari, Ryan Trask, Patrick Tallon, Carina
Carino, Arman Afrasiyabi, Vikas Kundra, Lan Ma, Lei Ren, Keyvan Farahani,
Michelle Hershman
- Abstract summary: PR-Isomap projects HD attributes into a lower-dimensional (LD) space while preserving information.
PR-Isomap achieved the highest comparative accuracies of 80.9% (STD:5.8) for pneumonia and 78.5% (STD:4.4), 88.4% (STD:1.4), and 61.4% (STD:11.4) for three NSCLC datasets.
- Score: 5.249541137718378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The isometric mapping method employs the shortest path algorithm to estimate
the Euclidean distance between points on High dimensional (HD) manifolds. This
may not be sufficient for weakly uniformed HD data as it could lead to
overestimating distances between far neighboring points, resulting in
inconsistencies between the intrinsic (local) and extrinsic (global) distances
during the projection. To address this issue, we modify the shortest path
algorithm by adding a novel constraint inspired by the Parzen-Rosenblatt (PR)
window, which helps to maintain the uniformity of the constructed shortest-path
graph in Isomap. Multiple imaging datasets overall of 72,236 cases, 70,000
MINST data, 1596 from multiple Chest-XRay pneumonia datasets, and three NSCLC
CT/PET datasets with a total of 640 lung cancer patients, were used to
benchmark and validate PR-Isomap. 431 imaging biomarkers were extracted from
each modality. Our results indicate that PR-Isomap projects HD attributes into
a lower-dimensional (LD) space while preserving information, visualized by the
MNIST dataset indicating the maintaining local and global distances. PR-Isomap
achieved the highest comparative accuracies of 80.9% (STD:5.8) for pneumonia
and 78.5% (STD:4.4), 88.4% (STD:1.4), and 61.4% (STD:11.4) for three NSCLC
datasets, with a confidence interval of 95% for outcome prediction. Similarly,
the multivariate Cox model showed higher overall survival, measured with
c-statistics and log-likelihood test, of PR-Isomap compared to other
dimensionality reduction methods. Kaplan Meier survival curve also signifies
the notable ability of PR-Isomap to distinguish between high-risk and low-risk
patients using multimodal imaging biomarkers preserving HD imaging
characteristics for precision medicine.
Related papers
- Continuous sPatial-Temporal Deformable Image Registration (CPT-DIR) for motion modelling in radiotherapy: beyond classic voxel-based methods [10.17207334278678]
We propose an implicit neural representation (INR)-based approach modelling motion continuously in both space and time, named Continues-sPatial-Temporal DIR (CPT-DIR)
The DIR's performance was tested on the DIR-Lab dataset of 10 lung 4DCT cases, using metrics of landmark accuracy (TRE), contour conformity (Dice) and image similarity (MAE)
The proposed CPT-DIR can reduce landmark TRE from 2.79mm to 0.99mm, outperforming B-splines' results for all cases.
arXiv Detail & Related papers (2024-05-01T10:26:08Z) - Quantifying uncertainty in lung cancer segmentation with foundation models applied to mixed-domain datasets [6.712251433139412]
Medical image foundation models have shown the ability to segment organs and tumors with minimal fine-tuning.
These models are typically evaluated on task-specific in-distribution (ID) datasets.
We introduced a comprehensive set of computationally fast metrics to evaluate the performance of multiple foundation models trained with self-supervised learning (SSL)
SMIT produced a highest F1-score (LRAD: 0.60, 5Rater: 0.64) and lowest entropy (LRAD: 0.06, 5Rater: 0.12), indicating higher tumor detection rate and confident segmentations.
arXiv Detail & Related papers (2024-03-19T19:36:48Z) - High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
Lung cancer has been one of the leading causes of cancer-related deaths worldwide for years.
Deep learning, computer-assisted diagnosis (CAD) models based on learning algorithms can accelerate the screening process.
However, developing robust and accurate models often requires large-scale and diverse medical datasets with high-quality annotations.
arXiv Detail & Related papers (2023-05-02T01:04:22Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
To investigate chest radiograph (CXR) classification performance of vision transformers (ViT) and interpretability of attention-based saliency.
ViTs were fine-tuned for lung disease classification using four public data sets: CheXpert, Chest X-Ray 14, MIMIC CXR, and VinBigData.
ViTs had comparable CXR classification AUCs compared with state-of-the-art CNNs.
arXiv Detail & Related papers (2023-03-03T12:05:41Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
This paper proposes a UNet-based segmentation approach that requires minimal post-processing.
It achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs' dystrophy.
arXiv Detail & Related papers (2022-10-13T15:34:20Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Structure-Aware Long Short-Term Memory Network for 3D Cephalometric
Landmark Detection [37.031819721889676]
We propose a novel Structure-Aware Long Short-Term Memory framework (SA-LSTM) for efficient and accurate 3D landmark detection.
SA-LSTM first locates the coarse landmarks via heatmap regression on a down-sampled CBCT volume.
It then progressively refines landmarks by attentive offset regression using high-resolution cropped patches.
Experiments show that our method significantly outperforms state-of-the-art methods in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-07-21T06:35:52Z) - Dopamine Transporter SPECT Image Classification for Neurodegenerative
Parkinsonism via Diffusion Maps and Machine Learning Classifiers [0.0]
This study aims to provide an automatic and robust method to classify the SPECT images into two types, namely Normal and Abnormal DaT-SPECT image groups.
The 3D images of N patients are mapped to an N by N pairwise distance matrix and training set are embedded into a low-dimensional space by using diffusion maps.
The feasibility of the method is demonstrated via Parkinsonism Progression Markers Initiative (PPMI) dataset of 1097 subjects and a clinical cohort from Kaohsiung Chang Gung Memorial Hospital (KCGMH-TW) of 630 patients.
arXiv Detail & Related papers (2021-04-06T06:30:15Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Chest x-ray automated triage: a semiologic approach designed for
clinical implementation, exploiting different types of labels through a
combination of four Deep Learning architectures [83.48996461770017]
This work presents a Deep Learning method based on the late fusion of different convolutional architectures.
We built four training datasets combining images from public chest x-ray datasets and our institutional archive.
We trained four different Deep Learning architectures and combined their outputs with a late fusion strategy, obtaining a unified tool.
arXiv Detail & Related papers (2020-12-23T14:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.