Coronary artery segmentation in non-contrast calcium scoring CT images
using deep learning
- URL: http://arxiv.org/abs/2403.02544v1
- Date: Mon, 4 Mar 2024 23:40:02 GMT
- Title: Coronary artery segmentation in non-contrast calcium scoring CT images
using deep learning
- Authors: Mariusz Bujny, Katarzyna Jesionek, Jakub Nalepa, Karol
Miszalski-Jamka, Katarzyna Widawka-\.Zak, Sabina Wolny, Marcin Kostur
- Abstract summary: We introduce a deep learning algorithm for segmenting coronary arteries in non-contrast cardiac CT images.
We propose a novel method for manual mesh-to-image registration, which is used to create our test-GT.
The experimental study shows that the trained model has significantly higher accuracy than the GT used for training, and leads to the Dice and clDice metrics close to the interrater variability.
- Score: 2.2687766762329886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise localization of coronary arteries in Computed Tomography (CT) scans
is critical from the perspective of medical assessment of coronary artery
disease. Although various methods exist that offer high-quality segmentation of
coronary arteries in cardiac contrast-enhanced CT scans, the potential of less
invasive, non-contrast CT in this area is still not fully exploited. Since such
fine anatomical structures are hardly visible in this type of medical images,
the existing methods are characterized by high recall and low precision, and
are used mainly for filtering of atherosclerotic plaques in the context of
calcium scoring. In this paper, we address this research gap and introduce a
deep learning algorithm for segmenting coronary arteries in multi-vendor
ECG-gated non-contrast cardiac CT images which benefits from a novel framework
for semi-automatic generation of Ground Truth (GT) via image registration. We
hypothesize that the proposed GT generation process is much more efficient in
this case than manual segmentation, since it allows for a fast generation of
large volumes of diverse data, which leads to well-generalizing models. To
investigate and thoroughly evaluate the segmentation quality based on such an
approach, we propose a novel method for manual mesh-to-image registration,
which is used to create our test-GT. The experimental study shows that the
trained model has significantly higher accuracy than the GT used for training,
and leads to the Dice and clDice metrics close to the interrater variability.
Related papers
- AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
We propose an attention-guided, feature-aggregated 3D deep network (AGFA-Net) for coronary artery segmentation using CCTA images.
AGFA-Net leverages attention mechanisms and feature refinement modules to capture salient features and enhance segmentation accuracy.
Evaluation on a dataset comprising 1,000 CCTA scans demonstrates AGFA-Net's superior performance, achieving an average Dice coefficient similarity of 86.74% and a Hausdorff distance of 0.23 mm.
arXiv Detail & Related papers (2024-06-13T01:04:47Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
We propose a novel structure-aware registration method by incorporating structural information of related organs with segmentation-guided deep registration network.
Our proposed method can achieve higher registration accuracy and preserve anatomical structure more effectively than state-of-the-art methods.
arXiv Detail & Related papers (2023-03-08T14:08:56Z) - ImageCAS: A Large-Scale Dataset and Benchmark for Coronary Artery
Segmentation based on Computed Tomography Angiography Images [13.486031592290258]
Cardiovascular disease (CVD) accounts for about half of non-communicable diseases.
Vessel stenosis in the coronary artery is considered to be the major risk of CVD.
We propose a large-scale dataset for coronary artery segmentation on CTA images.
arXiv Detail & Related papers (2022-11-03T06:37:10Z) - CACTUSS: Common Anatomical CT-US Space for US examinations [36.45569352490318]
Abdominal aortic aneurysm (AAA) is a vascular disease in which a section of the aorta enlarges, weakening its walls and potentially rupturing the vessel.
Recent abdominal CT datasets have been successfully utilized to train deep neural networks for automatic aorta segmentation.
CACTUSS acts as a virtual bridge between CT and US modalities to enable automatic AAA screening sonography.
arXiv Detail & Related papers (2022-07-18T14:05:25Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
The cardiac organ consists of multiple substructures, i.e., ventricles, atriums, aortas, arteries, veins, and myocardium.
These cardiac substructures are proximate to each other and have indiscernible boundaries.
We introduce a novel model to exploit shape and boundary-aware features.
arXiv Detail & Related papers (2021-05-27T13:54:59Z) - Multi-Slice Low-Rank Tensor Decomposition Based Multi-Atlas
Segmentation: Application to Automatic Pathological Liver CT Segmentation [4.262342157729123]
Liver segmentation from abdominal CT images is an essential step for liver cancer computer-aided diagnosis and surgical planning.
Currently, the accuracy and robustness of existing liver segmentation methods cannot meet the requirements of clinical applications.
We propose a novel low-rank tensor decomposition (LRTD) based multi-atlas segmentation (MAS) framework that achieves accurate and robust pathological liver segmentation of CT images.
arXiv Detail & Related papers (2021-02-24T04:09:39Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.