Enhancing Coronary Artery Calcium Scoring via Multi-Organ Segmentation on Non-Contrast Cardiac Computed Tomography
- URL: http://arxiv.org/abs/2501.11428v1
- Date: Mon, 20 Jan 2025 11:56:40 GMT
- Title: Enhancing Coronary Artery Calcium Scoring via Multi-Organ Segmentation on Non-Contrast Cardiac Computed Tomography
- Authors: Jakub Nalepa, Tomasz Bartczak, Mariusz Bujny, Jarosław Gośliński, Katarzyna Jesionek, Wojciech Malara, Filip Malawski, Karol Miszalski-Jamka, Patrycja Rewa, Marcin Kostur,
- Abstract summary: This paper argues that significant improvements can still be made in medical artificial intelligence.
By shifting the focus from pathology detection to a deeper understanding of anatomy, the novel algorithm proposed in the paper both achieves high accuracy.
- Score: 2.072323367088703
- License:
- Abstract: Despite coronary artery calcium scoring being considered a largely solved problem within the realm of medical artificial intelligence, this paper argues that significant improvements can still be made. By shifting the focus from pathology detection to a deeper understanding of anatomy, the novel algorithm proposed in the paper both achieves high accuracy in coronary artery calcium scoring and offers enhanced interpretability of the results. This approach not only aids in the precise quantification of calcifications in coronary arteries, but also provides valuable insights into the underlying anatomical structures. Through this anatomically-informed methodology, the paper shows how a nuanced understanding of the heart's anatomy can lead to more accurate and interpretable results in the field of cardiovascular health. We demonstrate the superior accuracy of the proposed method by evaluating it on an open-source multi-vendor dataset, where we obtain results at the inter-observer level, surpassing the current state of the art. Finally, the qualitative analyses show the practical value of the algorithm in such tasks as labeling coronary artery calcifications, identifying aortic calcifications, and filtering out false positive detections due to noise.
Related papers
- Coronary artery segmentation in non-contrast calcium scoring CT images
using deep learning [2.2687766762329886]
We introduce a deep learning algorithm for segmenting coronary arteries in non-contrast cardiac CT images.
We propose a novel method for manual mesh-to-image registration, which is used to create our test-GT.
The experimental study shows that the trained model has significantly higher accuracy than the GT used for training, and leads to the Dice and clDice metrics close to the interrater variability.
arXiv Detail & Related papers (2024-03-04T23:40:02Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task.
We introduce a semi-supervised approach for cardiovascular stenosis segmentation.
Our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T02:01:19Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Encoder-Decoder Architectures for Clinically Relevant Coronary Artery
Segmentation [0.0]
Coronary X-ray angiography is a crucial clinical procedure for the diagnosis and treatment of coronary artery disease.
Previous approaches have used non-optimal segmentation criteria, leading to less useful results.
We propose a line of efficient and high-performance segmentation models using a new decoder architecture, the EfficientUNet++.
arXiv Detail & Related papers (2021-06-21T23:32:11Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Automated Detection of Coronary Artery Stenosis in X-ray Angiography
using Deep Neural Networks [0.0]
We propose a two-step deep-learning framework to partially automate the detection of stenosis from X-ray coronary angiography images.
We achieved a 0.97 accuracy on the task of classifying the Left/Right Coronary Artery angle view and 0.68/0.73 recall on the determination of the regions of interest, for LCA and RCA, respectively.
arXiv Detail & Related papers (2021-03-04T11:45:54Z) - Automated Deep Learning Analysis of Angiography Video Sequences for
Coronary Artery Disease [4.233200689119682]
The evaluation of obstructions (stenosis) in coronary arteries is currently done by a physician's visual assessment of coronary angiography video sequences.
We report an automated analysis pipeline based on deep learning to rapidly and objectively assess coronary angiograms.
We combined powerful deep learning approaches such as ResNet and U-Net with traditional image processing and geometrical analysis.
arXiv Detail & Related papers (2021-01-29T10:23:49Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.