論文の概要: Wukong: Towards a Scaling Law for Large-Scale Recommendation
- arxiv url: http://arxiv.org/abs/2403.02545v1
- Date: Mon, 4 Mar 2024 23:40:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 16:38:11.488817
- Title: Wukong: Towards a Scaling Law for Large-Scale Recommendation
- Title(参考訳): Wukong: 大規模勧告のスケーリング法を目指して
- Authors: Buyun Zhang, Liang Luo, Yuxin Chen, Jade Nie, Xi Liu, Daifeng Guo,
Yanli Zhao, Shen Li, Yuchen Hao, Yantao Yao, Guna Lakshminarayanan, Ellie
Dingqiao Wen, Jongsoo Park, Maxim Naumov, Wenlin Chen
- Abstract要約: スケーリング法則はモデル品質の持続的な改善に重要な役割を果たしている。
現在までの勧告モデルは、大きな言語モデルの領域で見られるような法則を示さない。
本稿では,階層化された因子化マシンをベースとした効率的なネットワークアーキテクチャと,Wukongと呼ばれる相乗的アップスケーリング戦略を提案する。
- 参考スコア(独自算出の注目度): 19.562294474032843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling laws play an instrumental role in the sustainable improvement in
model quality. Unfortunately, recommendation models to date do not exhibit such
laws similar to those observed in the domain of large language models, due to
the inefficiencies of their upscaling mechanisms. This limitation poses
significant challenges in adapting these models to increasingly more complex
real-world datasets. In this paper, we propose an effective network
architecture based purely on stacked factorization machines, and a synergistic
upscaling strategy, collectively dubbed Wukong, to establish a scaling law in
the domain of recommendation. Wukong's unique design makes it possible to
capture diverse, any-order of interactions simply through taller and wider
layers. We conducted extensive evaluations on six public datasets, and our
results demonstrate that Wukong consistently outperforms state-of-the-art
models quality-wise. Further, we assessed Wukong's scalability on an internal,
large-scale dataset. The results show that Wukong retains its superiority in
quality over state-of-the-art models, while holding the scaling law across two
orders of magnitude in model complexity, extending beyond 100 Gflop or
equivalently up to GPT-3/LLaMa-2 scale of total training compute, where prior
arts fall short.
- Abstract(参考訳): スケーリング法則はモデル品質の持続可能な改善に重要な役割を果たしている。
残念ながら、これまでのレコメンデーションモデルは、大規模言語モデルの領域で見られるような法則を示さない。
この制限は、これらのモデルをより複雑な現実世界のデータセットに適応させる上で大きな課題となる。
本稿では,階層化された因子化マシンをベースとした効率的なネットワークアーキテクチャと,Wukongと呼ばれる相乗的アップスケーリング戦略を提案し,推薦領域におけるスケーリング法則を確立する。
Wukongのユニークなデザインは、より高層で広い層を通して、多様な、あらゆる順序の相互作用を捉えることができる。
我々は,6つの公開データセットに対して広範な評価を行い,その結果から,Wukongが常に最先端のモデルよりも品質的に優れていることを示した。
さらに、内部の大規模データセット上でWukongのスケーラビリティを評価した。
その結果,Wukongは,100Gflopを超える2桁のスケール法則を保ちながら,先行技術が不足するGPT-3/LLaMa-2スケールのトレーニング計算に匹敵する,最先端モデルよりも品質が優れていることがわかった。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - Scaling Laws for Pre-training Agents and World Models [22.701210075508147]
エンボディエージェントの性能は、モデルパラメータ、データセットサイズ、計算量を増やして改善されている。
本稿では,これらの課題におけるスケールの役割を,より正確に評価する。
論文 参考訳(メタデータ) (2024-11-07T04:57:40Z) - Towards Neural Scaling Laws for Time Series Foundation Models [63.5211738245487]
我々は、エンコーダオンリーとデコーダオンリーのトランスフォーマーの2つの一般的なTSFMアーキテクチャについて検討し、IDおよびOODデータのスケーリング挙動について検討する。
実験の結果,TSFMのログライクな損失はOODとID設定の両方で同様のスケーリング挙動を示すことがわかった。
モデル機能を強化した大規模TSFMの設計とスケーリングのための実用的なガイドラインを提供する。
論文 参考訳(メタデータ) (2024-10-16T08:23:39Z) - Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling [4.190836962132713]
本稿では,従来の注意機構の2次複雑さに対処する新しいアーキテクチャであるOrchidを紹介する。
このアーキテクチャのコアには、新しいデータ依存のグローバル畳み込み層があり、入力シーケンスに条件付きカーネルを文脈的に適応させる。
言語モデリングや画像分類など,複数の領域にまたがるモデルの評価を行い,その性能と汎用性を強調した。
論文 参考訳(メタデータ) (2024-02-28T17:36:45Z) - Mixtures of Experts Unlock Parameter Scaling for Deep RL [54.26191237981469]
本稿では,Mixture-of-Expert(MoE)モジュールを値ベースネットワークに組み込むことで,パラメータスケーラブルなモデルが得られることを示す。
この研究は、強化学習のためのスケーリング法則の開発に関する強力な実証的証拠を提供する。
論文 参考訳(メタデータ) (2024-02-13T17:18:56Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - PanGu-$\pi$: Enhancing Language Model Architectures via Nonlinearity
Compensation [97.78045712375047]
大規模言語モデル(LLM)のための新しい効率的なモデルアーキテクチャを提案する。
そこで,PanGu-$pi$-7Bは,約10%の推論速度を持つベンチマークに匹敵する性能が得られることを示す。
さらに,PanGu-$pi$-7Bを金融法と法律の高価値領域に導入し,実践的応用のためにYunShanというLLMを開発した。
論文 参考訳(メタデータ) (2023-12-27T11:49:24Z) - Scaling Laws Do Not Scale [54.72120385955072]
最近の研究によると、データセットのサイズが大きくなると、そのデータセットでトレーニングされたモデルのパフォーマンスが向上する。
このスケーリング法則の関係は、モデルのアウトプットの質を異なる集団がどのように認識するかと一致しないパフォーマンスを測定するために使われる指標に依存する、と我々は主張する。
異なるコミュニティは、互いに緊張関係にある価値を持ち、モデル評価に使用されるメトリクスについて、困難で、潜在的に不可能な選択をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-07-05T15:32:21Z) - Exploring the Effects of Data Augmentation for Drivable Area
Segmentation [0.0]
既存の画像データセットを解析することで、データ拡張の利点を調べることに重点を置いている。
以上の結果から,既存技術(SOTA)モデルの性能とロバスト性は劇的に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2022-08-06T03:39:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。