Distributed quantum machine learning via classical communication
- URL: http://arxiv.org/abs/2408.16327v1
- Date: Thu, 29 Aug 2024 08:05:57 GMT
- Title: Distributed quantum machine learning via classical communication
- Authors: Kiwmann Hwang, Hyang-Tag Lim, Yong-Su Kim, Daniel K. Park, Yosep Kim,
- Abstract summary: We present an experimentally accessible distributed quantum machine learning scheme that integrates quantum processor units via classical communication.
Our results indicate that incorporating classical communication notably improves classification accuracy compared to schemes without communication.
- Score: 0.7378853859331619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning is emerging as a promising application of quantum computing due to its distinct way of encoding and processing data. It is believed that large-scale quantum machine learning demonstrates substantial advantages over classical counterparts, but a reliable scale-up is hindered by the fragile nature of quantum systems. Here we present an experimentally accessible distributed quantum machine learning scheme that integrates quantum processor units via classical communication. As a demonstration, we perform data classification tasks on 8-dimensional synthetic datasets by emulating two 4-qubit processors and employing quantum convolutional neural networks. Our results indicate that incorporating classical communication notably improves classification accuracy compared to schemes without communication. Furthermore, at the tested circuit depths, we observe that the accuracy with classical communication is no less than that achieved with quantum communication. Our work provides a practical path to demonstrating large-scale quantum machine learning on intermediate-scale quantum processors by leveraging classical communication that can be implemented through currently available mid-circuit measurements.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Synergy between noisy quantum computers and scalable classical deep learning [0.4999814847776097]
We investigate the potential of combining the computational power of noisy quantum computers and classical scalable convolutional neural networks (CNNs)
The goal is to accurately predict exact expectation values of parameterized quantum circuits representing the Trotter-decomposed dynamics of quantum Ising models.
Thanks to the quantum information, our CNNs succeed even when supervised learning based only on classical descriptors fails.
arXiv Detail & Related papers (2024-04-11T14:47:18Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Federated Learning With Quantum Networks [7.842152902652214]
We present a quantum-classical transfer learning scheme for classical data and communication with a hub-spoke topology.
While quantum communication is secure from eavesdrop attacks and no measurements from quantum to classical translation, due to no cloning theorem, hub-spoke topology is not ideal for quantum communication without quantum memory.
We also demonstrate the first successful use of quantum weights for quantum federated learning, which allows us to perform our training entirely in quantum.
arXiv Detail & Related papers (2023-10-23T16:45:29Z) - Classical Verification of Quantum Learning [42.362388367152256]
We develop a framework for classical verification of quantum learning.
We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples.
Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents.
arXiv Detail & Related papers (2023-06-08T00:31:27Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum-Classical Hybrid Information Processing via a Single Quantum
System [1.1602089225841632]
Current technologies in quantum-based communications bring a new integration of quantum data with classical data for hybrid processing.
We propose a quantum reservoir processor to harness quantum dynamics in computational tasks requiring both classical and quantum inputs.
arXiv Detail & Related papers (2022-09-01T14:33:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.