Multi-Scale Subgraph Contrastive Learning
- URL: http://arxiv.org/abs/2403.02719v3
- Date: Fri, 12 Apr 2024 01:15:01 GMT
- Title: Multi-Scale Subgraph Contrastive Learning
- Authors: Yanbei Liu, Yu Zhao, Xiao Wang, Lei Geng, Zhitao Xiao,
- Abstract summary: We propose a multi-scale subgraph contrastive learning architecture which is able to characterize the fine-grained semantic information.
Specifically, we generate global and local views at different scales based on subgraph sampling, and construct multiple contrastive relationships according to their semantic associations.
- Score: 9.972544118719572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-level contrastive learning, aiming to learn the representations for each graph by contrasting two augmented graphs, has attracted considerable attention. Previous studies usually simply assume that a graph and its augmented graph as a positive pair, otherwise as a negative pair. However, it is well known that graph structure is always complex and multi-scale, which gives rise to a fundamental question: after graph augmentation, will the previous assumption still hold in reality? By an experimental analysis, we discover the semantic information of an augmented graph structure may be not consistent as original graph structure, and whether two augmented graphs are positive or negative pairs is highly related with the multi-scale structures. Based on this finding, we propose a multi-scale subgraph contrastive learning architecture which is able to characterize the fine-grained semantic information. Specifically, we generate global and local views at different scales based on subgraph sampling, and construct multiple contrastive relationships according to their semantic associations to provide richer self-supervised signals. Extensive experiments and parametric analyzes on eight graph classification real-world datasets well demonstrate the effectiveness of the proposed method.
Related papers
- Robust Graph Structure Learning under Heterophily [12.557639223778722]
We propose a novel robust graph structure learning method to achieve a high-quality graph from heterophilic data for downstream tasks.
We first apply a high-pass filter to make each node more distinctive from its neighbors by encoding structure information into the node features.
Then, we learn a robust graph with an adaptive norm characterizing different levels of noise.
arXiv Detail & Related papers (2024-03-06T12:29:13Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Generative Subgraph Contrast for Self-Supervised Graph Representation
Learning [16.374143635724327]
We propose a novel adaptive subgraph generation based contrastive learning framework for efficient and robust self-supervised graph representation learning.
It aims to generate contrastive samples by capturing the intrinsic structures of the graph and distinguish the samples based on the features and structures of subgraphs simultaneously.
arXiv Detail & Related papers (2022-07-25T09:08:46Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - Multi-Level Graph Contrastive Learning [38.022118893733804]
We propose a Multi-Level Graph Contrastive Learning (MLGCL) framework for learning robust representation of graph data by contrasting space views of graphs.
The original graph is first-order approximation structure and contains uncertainty or error, while the $k$NN graph generated by encoding features preserves high-order proximity.
Extensive experiments indicate MLGCL achieves promising results compared with the existing state-of-the-art graph representation learning methods on seven datasets.
arXiv Detail & Related papers (2021-07-06T14:24:43Z) - Generating a Doppelganger Graph: Resembling but Distinct [5.618335078130568]
We propose an approach to generating a doppelganger graph that resembles a given one in many graph properties.
The approach is an orchestration of graph representation learning, generative adversarial networks, and graph realization algorithms.
arXiv Detail & Related papers (2021-01-23T22:08:27Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.