論文の概要: Bootstrapping Rare Object Detection in High-Resolution Satellite Imagery
- arxiv url: http://arxiv.org/abs/2403.02736v1
- Date: Tue, 5 Mar 2024 07:44:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 15:36:12.002614
- Title: Bootstrapping Rare Object Detection in High-Resolution Satellite Imagery
- Title(参考訳): 高分解能衛星画像における希少物体検出のブートストラップ
- Authors: Akram Zaytar, Caleb Robinson, Gilles Q. Hacheme, Girmaw A. Tadesse,
Rahul Dodhia, Juan M. Lavista Ferres, Lacey F. Hughey, Jared A. Stabach,
Irene Amoke
- Abstract要約: 本稿では,このようなまれなオブジェクト検出タスクをブートストラップする問題に対処する。
我々は、パッチをサンプリングするための新しいオフラインおよびオンラインクラスタベースのアプローチを提案する。
ケニア・タンザニアのセレンゲティ・マラ地域において,牧畜動物に対するボマ(あるいは小さな囲い)の同定方法を適用した。
- 参考スコア(独自算出の注目度): 2.242884292006914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rare object detection is a fundamental task in applied geospatial machine
learning, however is often challenging due to large amounts of high-resolution
satellite or aerial imagery and few or no labeled positive samples to start
with. This paper addresses the problem of bootstrapping such a rare object
detection task assuming there is no labeled data and no spatial prior over the
area of interest. We propose novel offline and online cluster-based approaches
for sampling patches that are significantly more efficient, in terms of
exposing positive samples to a human annotator, than random sampling. We apply
our methods for identifying bomas, or small enclosures for herd animals, in the
Serengeti Mara region of Kenya and Tanzania. We demonstrate a significant
enhancement in detection efficiency, achieving a positive sampling rate
increase from 2% (random) to 30%. This advancement enables effective machine
learning mapping even with minimal labeling budgets, exemplified by an F1 score
on the boma detection task of 0.51 with a budget of 300 total patches.
- Abstract(参考訳): 希少物体検出は応用地理空間機械学習の基本的な課題であるが、高解像度の衛星や空中画像が多く、ラベル付き陽性サンプルがほとんど、あるいは全くないため、しばしば困難である。
本稿では、ラベル付きデータがなく、関心領域に空間的先行がないとして、そのような稀なオブジェクト検出タスクをブートストラップする問題に対処する。
ランダムサンプリングよりも,アノテータに正のサンプルを露出させることで,より効率的であるパッチをサンプリングするための,オフラインおよびオンラインクラスタベースの新しいアプローチを提案する。
ケニア・タンザニアのセレンゲティ・マラ地域において,牧畜動物に対するボマ(あるいは小さな囲い)の同定方法を適用した。
検出効率を大幅に向上させ,2% (ランダム) から30% まで正のサンプリング率向上を実現した。
この進歩により、boma検出タスク0.51のf1スコアが300の合計パッチで示すような、最小限のラベリング予算でも効果的な機械学習マッピングが可能になる。
関連論文リスト
- Highly Efficient and Unsupervised Framework for Moving Object Detection in Satellite Videos [0.2023650687546586]
本稿では,SVMODのための高度に効率的な非教師付きフレームワークを提案する。
提案手法は,1024倍画像上で秒間9フレームを処理できるだけでなく,フォアグラウンド・アート・パフォーマンスも実現可能であることを示す。
論文 参考訳(メタデータ) (2024-11-24T16:06:42Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Label-Efficient Object Detection via Region Proposal Network
Pre-Training [58.50615557874024]
地域提案ネットワーク(RPN)に効果的な事前学習を提供するための簡単な事前学習タスクを提案する。
RPN事前学習のないマルチステージ検出器と比較して,本手法はダウンストリームタスク性能を継続的に改善することができる。
論文 参考訳(メタデータ) (2022-11-16T16:28:18Z) - Cut and Continuous Paste towards Real-time Deep Fall Detection [12.15584530151789]
本稿では,単一かつ小型の畳み込みニューラルネットワークを通じてフォールを検出するための,シンプルで効率的なフレームワークを提案する。
まず,人間の動きを1フレームで表現する画像合成手法を提案する。
推論ステップでは、入力フレームの平均値を推定することにより、実際の人間の動きを1つの画像で表現する。
論文 参考訳(メタデータ) (2022-02-22T06:07:16Z) - IS-COUNT: Large-scale Object Counting from Satellite Images with
Covariate-based Importance Sampling [90.97859312029615]
本研究では,大規模地形におけるオブジェクト数統計をサンプリングによって推定する手法を提案する。
提案手法は,米国とアフリカ,ケニアの自動車,バングラデシュのレンガキルン,米国のスイミングプールの建物数の推定において,高い性能を発揮することを示す。
論文 参考訳(メタデータ) (2021-12-16T18:59:29Z) - An Efficient Method for the Classification of Croplands in Scarce-Label
Regions [0.0]
衛星時系列画像による農地分類の主な課題は、地表面データ不足と、未開発地域における高品質のハイパースペクトル画像の到達不能である。
ラベルなしの中解像度衛星画像は豊富だが、その恩恵を受けるにはオープンな問題だ。
自監督タスクを用いた作物分類におけるその可能性の活用方法を示す。
論文 参考訳(メタデータ) (2021-03-17T12:10:11Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
ドメイン適応(DA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的とする。
本稿では,教師なしキーポイント検出のためのレグレッシブドメイン適応(RegDA)法を提案する。
提案手法は,異なるデータセット上のPCKにおいて,8%から11%の大幅な改善をもたらす。
論文 参考訳(メタデータ) (2021-03-10T16:45:22Z) - MRDet: A Multi-Head Network for Accurate Oriented Object Detection in
Aerial Images [51.227489316673484]
水平アンカーから変換された指向性提案を生成するために、任意指向領域提案ネットワーク(AO-RPN)を提案する。
正確なバウンディングボックスを得るために,検出タスクを複数のサブタスクに分離し,マルチヘッドネットワークを提案する。
各ヘッドは、対応するタスクに最適な特徴を学習するために特別に設計されており、ネットワークがオブジェクトを正確に検出することができる。
論文 参考訳(メタデータ) (2020-12-24T06:36:48Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
地域サンプリングや重み付けは、現代の地域ベースの物体検出器の成功に極めて重要である。
サンプル重み付けはデータ依存でタスク依存であるべきだと我々は主張する。
サンプルのタスク重みを予測するための統一的なサンプル重み付けネットワークを提案する。
論文 参考訳(メタデータ) (2020-06-11T16:19:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。