論文の概要: Better Sampling, towards Better End-to-end Small Object Detection
- arxiv url: http://arxiv.org/abs/2407.06127v1
- Date: Fri, 17 May 2024 04:37:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 14:19:18.438813
- Title: Better Sampling, towards Better End-to-end Small Object Detection
- Title(参考訳): エンド・ツー・エンドの小型物体検出に向けたサンプリングの改善
- Authors: Zile Huang, Chong Zhang, Mingyu Jin, Fangyu Wu, Chengzhi Liu, Xiaobo Jin,
- Abstract要約: 限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
- 参考スコア(独自算出の注目度): 7.7473020808686694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While deep learning-based general object detection has made significant strides in recent years, the effectiveness and efficiency of small object detection remain unsatisfactory. This is primarily attributed not only to the limited characteristics of such small targets but also to the high density and mutual overlap among these targets. The existing transformer-based small object detectors do not leverage the gap between accuracy and inference speed. To address challenges, we propose methods enhancing sampling within an end-to-end framework. Sample Points Refinement (SPR) constrains localization and attention, preserving meaningful interactions in the region of interest and filtering out misleading information. Scale-aligned Target (ST) integrates scale information into target confidence, improving classification for small object detection. A task-decoupled Sample Reweighting (SR) mechanism guides attention toward challenging positive examples, utilizing a weight generator module to assess the difficulty and adjust classification loss based on decoder layer outcomes. Comprehensive experiments across various benchmarks reveal that our proposed detector excels in detecting small objects. Our model demonstrates a significant enhancement, achieving a 2.9\% increase in average precision (AP) over the state-of-the-art (SOTA) on the VisDrone dataset and a 1.7\% improvement on the SODA-D dataset.
- Abstract(参考訳): 近年,ディープラーニングに基づく汎用物体検出は大きな進歩を遂げているが,小型物体検出の有効性と効率性は依然として不十分である。
これは、このような小さなターゲットの限られた特性だけでなく、高密度で相互に重なり合うことによるものである。
既存のトランスベースの小型物体検出器は、精度と推論速度のギャップを生かしていない。
そこで本研究では,エンドツーエンドフレームワークにおけるサンプリングの強化手法を提案する。
サンプルポイントリファインメント(SPR)は、ローカライズと注意を制限し、関心領域における意味のある相互作用を保持し、誤った情報をフィルタリングする。
スケールアライメントターゲット(ST)は、スケール情報を目標信頼度に統合し、小さなオブジェクト検出のための分類を改善する。
タスク分離型サンプル再重み付け(SR)機構は、重み生成モジュールを用いて、デコーダ層の結果に基づいて、難易度を評価し、分類損失を調整する。
様々なベンチマークの総合的な実験により、提案した検出器は小さな物体を検出するのに優れていることが判明した。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9 %向上し、SODA-Dデータセットでは1.7 %改善されたことを示す。
関連論文リスト
- Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
本研究では,新しいデータセット,ベンチマーク,動的粗大な学習手法を提案する。
提案するデータセットであるAI-TOD-Rは、すべてのオブジェクト指向オブジェクト検出データセットの中で最小のオブジェクトサイズを特徴としている。
完全教師付きおよびラベル効率の両アプローチを含む,幅広い検出パラダイムにまたがるベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-16T09:14:32Z) - Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images [15.12889076965307]
YOLOv7ワンステージ検出器は、新しいメタラーニングトレーニングフレームワークが組み込まれている。
この変換により、検出器はFSODのタスクに十分対応できると同時に、その固有の軽量化の利点を活かすことができる。
提案検出器の有効性を検証するため, 現状の検出器と性能比較を行った。
論文 参考訳(メタデータ) (2024-04-29T04:56:52Z) - Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection [12.417754433715903]
Sparse Semi-DETRは、トランスフォーマーをベースとした、エンドツーエンドの半教師付きオブジェクト検出ソリューションである。
Sparse Semi-DETR には Query Refinement Module が組み込まれており、オブジェクトクエリの品質を高め、小型で部分的に隠されたオブジェクトの検出能力を著しく改善している。
MS-COCOおよびPascal VOCオブジェクト検出ベンチマークでは、Sparse Semi-DETRは現在の最先端手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-04-02T10:22:23Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
本稿では,DeTRオブジェクト検出器上での微調整および自己教師型学習によるインクリメンタル・デクリメンタル・デクリメンタル・デクリメンタル・オブジェクト検出を提案する。
まず,DeTRのクラス固有のコンポーネントを自己監督で微調整する。
さらに,DeTRのクラス固有のコンポーネントに知識蒸留を施した数発の微調整戦略を導入し,破滅的な忘れを伴わずに新しいクラスを検出するネットワークを奨励する。
論文 参考訳(メタデータ) (2022-05-09T05:08:08Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
地域サンプリングや重み付けは、現代の地域ベースの物体検出器の成功に極めて重要である。
サンプル重み付けはデータ依存でタスク依存であるべきだと我々は主張する。
サンプルのタスク重みを予測するための統一的なサンプル重み付けネットワークを提案する。
論文 参考訳(メタデータ) (2020-06-11T16:19:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。