論文の概要: Data Collaboration Analysis with Orthogonal Basis Alignment
- arxiv url: http://arxiv.org/abs/2403.02780v2
- Date: Sun, 15 Dec 2024 03:50:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:49:17.539748
- Title: Data Collaboration Analysis with Orthogonal Basis Alignment
- Title(参考訳): 直交基底アライメントを用いたデータ協調解析
- Authors: Keiyu Nosaka, Yuichi Takano, Akiko Yoshise,
- Abstract要約: Data Collaboration (DC)フレームワークは、マルチソースデータ融合のためのプライバシ保護ソリューションを提供する。
その強みにもかかわらず、DCフレームワークは、生データのマッピングに使用されるベースを整合させるという理論的課題のために、しばしばパフォーマンスの不安定さに直面する。
本研究は,直流フレームワーク内でのベースアライメントのための厳密な理論基盤を確立することで,これらの課題に対処する。
- 参考スコア(独自算出の注目度): 2.928964540437144
- License:
- Abstract: The Data Collaboration (DC) framework provides a privacy-preserving solution for multi-source data fusion, enabling the joint analysis of data from multiple sources to achieve enhanced insights. It utilizes linear transformations with secretly selected bases to ensure privacy guarantees through non-iterative communication. Despite its strengths, the DC framework often encounters performance instability due to theoretical challenges in aligning the bases used for mapping raw data. This study addresses these challenges by establishing a rigorous theoretical foundation for basis alignment within the DC framework, formulating it as an optimization problem over orthogonal matrices. Under specific assumptions, we demonstrate that this problem can be reduced to the Orthogonal Procrustes Problem, which has a well-known analytical solution. Extensive empirical evaluations across diverse datasets reveal that the proposed alignment method significantly enhances model performance and computational efficiency, outperforming existing approaches. Additionally, it demonstrates robustness across varying levels of differential privacy, thus enabling practical and reliable implementations of the DC framework.
- Abstract(参考訳): Data Collaboration (DC)フレームワークは、マルチソースデータ融合のためのプライバシ保護ソリューションを提供する。
秘密に選択されたベースを持つ線形変換を使用して、非観念的通信によるプライバシー保証を保証します。
その強みにもかかわらず、DCフレームワークは、生データのマッピングに使用されるベースを整合させるという理論的課題のために、しばしばパフォーマンスの不安定さに直面する。
本研究は直交行列に対する最適化問題として定式化して,直流フレームワーク内の基底アライメントのための厳密な理論基盤を確立することにより,これらの課題に対処する。
特定の仮定の下では、この問題はよく知られた分析解を持つオルソゴン・プロクリスト問題に還元できることを示す。
このアライメント手法はモデルの性能と計算効率を大幅に向上させ,既存手法よりも優れていることを示す。
さらに、様々なレベルの差分プライバシーの堅牢性を示し、DCフレームワークの実用的で信頼性の高い実装を可能にする。
関連論文リスト
- A Robust Negative Learning Approach to Partial Domain Adaptation Using
Source Prototypes [0.8895157045883034]
この研究は、負の転送問題を緩和する堅牢な部分的ドメイン適応(PDA)フレームワークを提案する。
それは多様で相補的なラベルフィードバックを含み、誤ったフィードバックの効果を緩和し、擬似ラベル改善を促進する。
我々は,部分領域適応タスクを網羅するアブレーション解析を含む包括的実験を行った。
論文 参考訳(メタデータ) (2023-09-07T07:26:27Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Memory Consistent Unsupervised Off-the-Shelf Model Adaptation for
Source-Relaxed Medical Image Segmentation [13.260109561599904]
非教師なしドメイン適応(UDA)は、ラベル付きソースドメインからラベル付きヘテロジニアスターゲットドメインに学習した情報を移行するための重要なプロトコルである。
我々は、ソースドメインで訓練されたOSセグメントをターゲットドメインに適応させることにより、イメージセグメンテーションを目的とした「オフ・ザ・シェルフ(OS)」 UDA (OSUDA) を提案する。
論文 参考訳(メタデータ) (2022-09-16T13:13:50Z) - On Certifying and Improving Generalization to Unseen Domains [87.00662852876177]
ドメインの一般化は、テスト時に遭遇した見知らぬドメインのパフォーマンスが高いモデルを学ぶことを目的としています。
いくつかのベンチマークデータセットを使用して、DGアルゴリズムを包括的に評価することは困難である。
我々は,任意のDG手法の最悪の性能を効率的に証明できる普遍的な認証フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-24T16:29:43Z) - Balancing Discriminability and Transferability for Source-Free Domain
Adaptation [55.143687986324935]
従来のドメイン適応(DA)技術は、ドメイン不変表現を学習することでドメイン転送性を改善することを目的としている。
ラベル付けされたソースとラベル付けされていないターゲットへの同時アクセス要件は、ソースフリーなDA設定に適さない。
そこで本研究では,原文と翻訳サンプルの混在が識別可能性と伝達可能性のトレードオフを促進することを示す新しい知見を導出する。
論文 参考訳(メタデータ) (2022-06-16T09:06:22Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Adapting Off-the-Shelf Source Segmenter for Target Medical Image
Segmentation [12.703234995718372]
教師なしドメイン適応(Unsupervised domain adapt, UDA)は、ラベル付きソースドメインから学習した知識をラベルなしおよび見えないターゲットドメインに転送することを目的としている。
データストレージやプライバシの問題のため、適応段階でのソースドメインデータへのアクセスは制限されることが多い。
我々は、ソースドメインで事前訓練されたオフザシェルフセグメントモデルをターゲットドメインに適用することを提案する。
論文 参考訳(メタデータ) (2021-06-23T16:16:55Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z) - Unsupervised Domain Adaptation via Structurally Regularized Deep
Clustering [35.008158504090176]
教師なし領域適応(Unsupervised domain adapt, UDA)とは、対象ドメイン上のラベルなしデータの予測であり、対象ドメインから分布がシフトするソースドメイン上のラベル付きデータである。
対象データの識別クラスタリングにより,本質的な対象識別を直接発見することを提案する。
我々は,提案手法をSRDC (Structurely Regularized Deep Clustering) と呼ぶ。
論文 参考訳(メタデータ) (2020-03-19T07:26:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。