論文の概要: Scalable Continuous-time Diffusion Framework for Network Inference and Influence Estimation
- arxiv url: http://arxiv.org/abs/2403.02867v2
- Date: Tue, 21 May 2024 02:49:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 18:22:08.285664
- Title: Scalable Continuous-time Diffusion Framework for Network Inference and Influence Estimation
- Title(参考訳): ネットワーク推論と影響推定のためのスケーラブルな連続時間拡散フレームワーク
- Authors: Keke Huang, Ruize Gao, Bogdan Cautis, Xiaokui Xiao,
- Abstract要約: 本稿では,拡散過程を連続時間力学系とみなし,連続時間拡散モデルを確立する。
次に、モデルをスケーラブルで効果的なフレームワーク(FIM)にインスタンス化し、利用可能なカスケードからの拡散拡散を近似する。
影響推定のためのスケーラビリティを実現するため,高度なサンプリング手法を考案し,効率を大幅に向上させる。
- 参考スコア(独自算出の注目度): 27.561806717195054
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The study of continuous-time information diffusion has been an important area of research for many applications in recent years. When only the diffusion traces (cascades) are accessible, cascade-based network inference and influence estimation are two essential problems to explore. Alas, existing methods exhibit limited capability to infer and process networks with more than a few thousand nodes, suffering from scalability issues. In this paper, we view the diffusion process as a continuous-time dynamical system, based on which we establish a continuous-time diffusion model. Subsequently, we instantiate the model to a scalable and effective framework (FIM) to approximate the diffusion propagation from available cascades, thereby inferring the underlying network structure. Furthermore, we undertake an analysis of the approximation error of FIM for network inference. To achieve the desired scalability for influence estimation, we devise an advanced sampling technique and significantly boost the efficiency. We also quantify the effect of the approximation error on influence estimation theoretically. Experimental results showcase the effectiveness and superior scalability of FIM on network inference and influence estimation.
- Abstract(参考訳): 近年,連続時間情報拡散の研究は,多くの応用分野において重要な研究領域となっている。
拡散トレース(カスケード)のみがアクセス可能である場合、カスケードに基づくネットワーク推定と影響推定は2つの重要な問題である。
残念ながら、既存の手法では数千以上のノードを持つネットワークを推論および処理する能力に制限があり、スケーラビリティの問題に悩まされている。
本稿では,拡散過程を連続時間力学系とみなし,連続時間拡散モデルを確立する。
その後、モデルをスケーラブルで効果的なフレームワーク(FIM)にインスタンス化し、利用可能なカスケードからの拡散伝搬を近似し、基盤となるネットワーク構造を推定する。
さらに,ネットワーク推論におけるFIMの近似誤差の解析を行った。
影響推定のためのスケーラビリティを実現するため,高度なサンプリング手法を考案し,効率を大幅に向上させる。
また,近似誤差が影響評価に与える影響を理論的に定量化する。
ネットワーク推定および影響推定におけるFIMの有効性と優れた拡張性を示す実験結果を得た。
関連論文リスト
- DiffPO: A causal diffusion model for learning distributions of potential outcomes [22.262471034812492]
DiffPOと呼ばれる新しい因果拡散モデルを提案する。
潜在的な結果の分布を学習することで、医療における信頼性の高い推論のために慎重に設計されている。
本手法は多種多様な実験において最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-10-11T15:50:17Z) - Influence Maximization via Graph Neural Bandits [54.45552721334886]
IM問題を多ラウンド拡散キャンペーンに設定し,影響を受けやすいユーザ数を最大化することを目的とした。
IM-GNB(Influence Maximization with Graph Neural Bandits)を提案する。
論文 参考訳(メタデータ) (2024-06-18T17:54:33Z) - Predicting Cascading Failures with a Hyperparametric Diffusion Model [66.89499978864741]
拡散モデルのレンズによる電力グリッドのカスケード故障について検討する。
我々のモデルは、バイラル拡散原理と物理に基づく概念を統合する。
この拡散モデルはカスケード故障の痕跡から学習可能であることを示す。
論文 参考訳(メタデータ) (2024-06-12T02:34:24Z) - Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning [24.63284452991301]
ネットワーク干渉下での2つの頑健な因果効果推定器を提案する。
具体的には,対象とする学習手法をネットワーク干渉設定に一般化する。
我々は、同定された理論条件を目標損失に変換することによって、エンドツーエンドの因果効果推定器を考案する。
論文 参考訳(メタデータ) (2024-05-06T10:49:51Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - DSCom: A Data-Driven Self-Adaptive Community-Based Framework for
Influence Maximization in Social Networks [3.97535858363999]
我々は、属性ネットワーク上の問題を再構成し、ノード属性を利用して接続ノード間の近接性を推定する。
具体的には、この問題に対処するため、DSComという機械学習ベースのフレームワークを提案する。
従来の理論的研究と比較して,実世界のソーシャルネットワークに基づくパラメータ化拡散モデルを用いた実験実験を慎重に設計した。
論文 参考訳(メタデータ) (2023-11-18T14:03:43Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
A single SnapsHot (DASH) から拡散履歴を再構築するための新しいバリセンターの定式化を提案する。
本研究では,拡散パラメータ推定のNP硬度により,拡散パラメータの推定誤差が避けられないことを証明する。
また、DITTO(Diffusion hitting Times with Optimal proposal)という効果的な解法も開発している。
論文 参考訳(メタデータ) (2023-06-01T09:39:32Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。