論文の概要: Influence Maximization via Graph Neural Bandits
- arxiv url: http://arxiv.org/abs/2406.12835v1
- Date: Tue, 18 Jun 2024 17:54:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 17:39:34.865577
- Title: Influence Maximization via Graph Neural Bandits
- Title(参考訳): グラフニューラルバンドによる影響の最大化
- Authors: Yuting Feng, Vincent Y. F. Tan, Bogdan Cautis,
- Abstract要約: IM問題を多ラウンド拡散キャンペーンに設定し,影響を受けやすいユーザ数を最大化することを目的とした。
IM-GNB(Influence Maximization with Graph Neural Bandits)を提案する。
- 参考スコア(独自算出の注目度): 54.45552721334886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a ubiquitous scenario in the study of Influence Maximization (IM), in which there is limited knowledge about the topology of the diffusion network. We set the IM problem in a multi-round diffusion campaign, aiming to maximize the number of distinct users that are influenced. Leveraging the capability of bandit algorithms to effectively balance the objectives of exploration and exploitation, as well as the expressivity of neural networks, our study explores the application of neural bandit algorithms to the IM problem. We propose the framework IM-GNB (Influence Maximization with Graph Neural Bandits), where we provide an estimate of the users' probabilities of being influenced by influencers (also known as diffusion seeds). This initial estimate forms the basis for constructing both an exploitation graph and an exploration one. Subsequently, IM-GNB handles the exploration-exploitation tradeoff, by selecting seed nodes in real-time using Graph Convolutional Networks (GCN), in which the pre-estimated graphs are employed to refine the influencers' estimated rewards in each contextual setting. Through extensive experiments on two large real-world datasets, we demonstrate the effectiveness of IM-GNB compared with other baseline methods, significantly improving the spread outcome of such diffusion campaigns, when the underlying network is unknown.
- Abstract(参考訳): 本研究では,拡散ネットワークのトポロジに関する知識が限られている影響最大化(IM)の研究において,ユビキタスなシナリオを考える。
IM問題を多ラウンド拡散キャンペーンに設定し,影響を受けやすいユーザ数を最大化することを目的とした。
本研究は,探索と利用の目的とニューラルネットワークの表現性を効果的にバランスさせるバンディットアルゴリズムの能力を活用し,IM問題へのニューラルバンディットアルゴリズムの適用について検討する。
本稿では,インフルエンサー(拡散シード)の影響を受けやすい確率を推定するフレームワークIM-GNB(Influence Maximization with Graph Neural Bandits)を提案する。
この最初の見積もりは、エクスプロイトグラフと探索グラフの両方を構築するための基礎を形成する。
その後、IM-GNBはグラフ畳み込みネットワーク(GCN)を用いてシードノードをリアルタイムで選択することで探索・探索トレードオフを処理する。
2つの大規模な実世界のデータセットに対する広範な実験を通じて、IM-GNBが他のベースライン手法と比較して有効であることを実証し、基礎となるネットワークが不明な場合の拡散キャンペーンの拡散効果を著しく改善する。
関連論文リスト
- Estimating Peer Direct and Indirect Effects in Observational Network Data [16.006409149421515]
本稿では、ピア直接効果とピア間接効果の両方を考慮し、個人自身の治療の効果を考慮に入れた一般的な設定を提案する。
注意機構を用いて、異なる隣人の影響を識別し、グラフニューラルネットワークによる高次隣人効果を探索する。
理論的には,ネットワークシステムにおける介入戦略を改善する可能性があり,ソーシャルネットワークや疫学などの分野にも応用できる。
論文 参考訳(メタデータ) (2024-08-21T10:02:05Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - Graph Neural Bandits [49.85090929163639]
グラフニューラルネットワーク(GNN)によって強化されたユーザ間の協調性を生かしたグラフニューラルバンド(GNB)というフレームワークを提案する。
提案手法を改良するために,推定ユーザグラフ上の別々のGNNモデルを用いて,エクスプロイトと適応探索を行う。
論文 参考訳(メタデータ) (2023-08-21T15:57:57Z) - INFLECT-DGNN: Influencer Prediction with Dynamic Graph Neural Networks [4.677411878315618]
INFLuencer prEdiCTion with Dynamic Graph Neural Networks (GNN) and Recurrent Neural Networks (RNN)について述べる。
モデル予測に基づく意思決定を支援する,新たな利益主導型フレームワークを提案する。
我々の研究は、参照とターゲットマーケティングの分野に重大な影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-16T19:04:48Z) - Deep Graph Representation Learning and Optimization for Influence
Maximization [10.90744025490539]
インフルエンサー(IM)は、ソーシャルネットワークから初期ユーザのセットを選択して、影響を受けたユーザの期待人数を最大化する。
本稿では,シードセットの潜在表現を生成的に特徴付けるための新しいフレームワークであるDeepIMを提案する。
また、フレキシブルなノード分散性に基づく予算制約の下で最適なシードセットを推論する新たな目的関数を設計する。
論文 参考訳(メタデータ) (2023-05-01T15:45:01Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
インフルエンサー検出のための動的グラフニューラルネットワーク(GNN)の構成について検討する。
GNNにおける深層多面的注意と時間特性の符号化が性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2022-11-15T13:00:25Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - GraMeR: Graph Meta Reinforcement Learning for Multi-Objective Influence
Maximization [1.7311053765541482]
インフルエンス(IM)とは、ネットワーク内のシードノードと呼ばれるノードのサブセットを特定する問題である(グラフ)。
IMには、バイラルマーケティング、疫病対策、センサー配置、その他のネットワーク関連タスクなど、数多くの応用がある。
我々は、本質的および影響的アクティベーションの両方を扱うマルコフ決定プロセスとして、一般的なIM問題を開発する。
論文 参考訳(メタデータ) (2022-05-30T03:48:51Z) - Contextual Bandits for Advertising Campaigns: A Diffusion-Model
Independent Approach (Extended Version) [73.59962178534361]
拡散ネットワークや情報伝達の仕方を決定するモデルについてはほとんど知られていないと考えられる影響問題について検討する。
この設定では、キャンペーンの実行中に主要な拡散パラメータを学習するために探索-探索アプローチが使用できる。
本稿では,2つの文脈的マルチアーム・バンディットの手法と,インフルエンサーの残りのポテンシャルに対する上限について比較する。
論文 参考訳(メタデータ) (2022-01-13T22:06:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。