論文の概要: MathScale: Scaling Instruction Tuning for Mathematical Reasoning
- arxiv url: http://arxiv.org/abs/2403.02884v1
- Date: Tue, 5 Mar 2024 11:42:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 15:09:37.249249
- Title: MathScale: Scaling Instruction Tuning for Mathematical Reasoning
- Title(参考訳): MathScale: 数学的推論のためのスケーリングインストラクションチューニング
- Authors: Zhengyang Tang, Xingxing Zhang, Benyou Wan, Furu Wei
- Abstract要約: 大規模言語モデル(LLM)は問題解決において顕著な能力を示した。
しかし、数学的な問題を解く能力は依然として不十分である。
高品質な数学的推論データを作成するためのシンプルでスケーラブルな方法であるMathScaleを提案する。
- 参考スコア(独自算出の注目度): 70.89605383298331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities in
problem-solving. However, their proficiency in solving mathematical problems
remains inadequate. We propose MathScale, a simple and scalable method to
create high-quality mathematical reasoning data using frontier LLMs (e.g., {\tt
GPT-3.5}). Inspired by the cognitive mechanism in human mathematical learning,
it first extracts topics and knowledge points from seed math questions and then
build a concept graph, which is subsequently used to generate new math
questions. MathScale exhibits effective scalability along the size axis of the
math dataset that we generate. As a result, we create a mathematical reasoning
dataset (MathScaleQA) containing two million math question-answer pairs. To
evaluate mathematical reasoning abilities of LLMs comprehensively, we construct
{\sc MwpBench}, a benchmark of Math Word Problems, which is a collection of ten
datasets (including GSM8K and MATH) covering K-12, college, and competition
level math problems. We apply MathScaleQA to fine-tune open-source LLMs (e.g.,
LLaMA-2 and Mistral), resulting in significantly improved capabilities in
mathematical reasoning. Evaluated on {\sc MwpBench}, MathScale-7B achieves
state-of-the-art performance across all datasets, surpassing its best peers of
equivalent size by 42.9\% in micro average accuracy and 43.7\% in macro average
accuracy, respectively.
- Abstract(参考訳): 大規模言語モデル(LLM)は問題解決において顕著な能力を示した。
しかし、数学的な問題を解く能力は依然として不十分である。
本研究では,フロンティアLSM(例えば,GPT-3.5})を用いて高品質な数学的推論データを作成するための,シンプルでスケーラブルな方法であるMathScaleを提案する。
人間の数学的学習における認知メカニズムに触発され、まず種数学の質問からトピックと知識ポイントを抽出し、その後概念グラフを構築し、新しい数学の質問を生成する。
MathScaleは、私たちが生成する数学データセットのサイズ軸に沿って、効果的なスケーラビリティを示します。
その結果,200万の質問応答対を含む数学的推論データセット(MathScaleQA)を作成した。
K-12、大学、競争レベルの数学問題をカバーする10個のデータセット(GSM8K、MATHを含む)の集合であるMath Word Problemsのベンチマークである {\sc MwpBench} を総合的に評価する。
オープンソースLLM(LLaMA-2やMistralなど)にMathScaleQAを適用し,数学的推論の能力を大幅に向上させる。
mathscale-7b は {\sc mwpbench} で評価され、全てのデータセットで最先端のパフォーマンスを達成し、マイクロ平均精度で42.9\%、マクロ平均精度で43.7\%、同等サイズの最高のピアを上回った。
関連論文リスト
- MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBenchは、大規模言語モデルの数学的能力を厳格に評価する新しいベンチマークである。
MathBenchは幅広い数学の分野にまたがっており、理論的な理解と実践的な問題解決のスキルの両方を詳細に評価している。
論文 参考訳(メタデータ) (2024-05-20T17:52:29Z) - FineMath: A Fine-Grained Mathematical Evaluation Benchmark for Chinese Large Language Models [44.63505885248145]
FineMathは、中国語大言語モデル(LLM)を評価するための詳細な数学的評価ベンチマークデータセットである。
FineMathは、小学校数学で教えられる主要な数学的概念をカバーし、数学用語の問題の17のカテゴリに分けられる。
数学の単語問題のうち17のカテゴリは、これらの問題を解決するために必要な推論ステップの数に応じて、難易度を手動でアノテートする。
論文 参考訳(メタデータ) (2024-03-12T15:32:39Z) - MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning [2.9104279358536647]
数学的推論のためのツール強化された大規模言語モデルであるMathSenseiを提案する。
ツールの補完的な利点として、知識検索(Bing Web Search)、プログラムジェネレータ+エグゼキュータ(Python)、記号方程式ソルバ(Wolfram-Alpha API)について検討する。
論文 参考訳(メタデータ) (2024-02-27T05:50:35Z) - MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical
Reasoning [52.97768001837269]
本稿では,オープンソース言語モデルを微調整する手法を提案する。
本稿では,問題のある新しい,高品質なデータセットを生成する手法とそのコードベースソリューションを提案する。
このアプローチは、問題の解決にコードベースのソリューションを生成することができるモデルのファミリーであるMathCoderモデルを生成する。
論文 参考訳(メタデータ) (2023-10-05T17:52:09Z) - MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models [91.66694225955872]
数学的推論を専門とする微調整言語モデルであるMetaMathを提案する。
具体的には、余分な知識を伴わずに複数の視点から質問を書き換えることで、数学的質問をブートストラップすることから始める。
私たちは、すべてのMetaMathQAデータセット、異なるモデルサイズを持つMetaMathモデル、パブリック使用のためのトレーニングコードをリリースします。
論文 参考訳(メタデータ) (2023-09-21T17:45:42Z) - WizardMath: Empowering Mathematical Reasoning for Large Language Models
via Reinforced Evol-Instruct [128.89645483139236]
本稿では,Llama-2の数学的推論能力を向上するWizardMathを提案する。
GSM8kではChatGPT-3.5, Claude Instant-1, PaLM-2, Minervaを上回り, 同時にMATHでは Text-davinci, PaLM-1, GPT-3 を上回ります。
論文 参考訳(メタデータ) (2023-08-18T14:23:21Z) - Measuring Mathematical Problem Solving With the MATH Dataset [55.4376028963537]
12,500の競合数学問題のデータセットであるMATHを紹介する。
各問題には、答えの導出と説明を生成するためのモデルを教えるために使用できる完全なステップバイステップソリューションがあります。
また、モデルに数学の基礎を教えるための補助的事前学習データセットも提供します。
論文 参考訳(メタデータ) (2021-03-05T18:59:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。