論文の概要: Learning to Use Tools via Cooperative and Interactive Agents
- arxiv url: http://arxiv.org/abs/2403.03031v1
- Date: Tue, 5 Mar 2024 15:08:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 14:18:02.030048
- Title: Learning to Use Tools via Cooperative and Interactive Agents
- Title(参考訳): 協調型対話型エージェントによるツール活用の学習
- Authors: Zhengliang Shi, Shen Gao, Xiuyi Chen, Lingyong Yan, Haibo Shi, Dawei
Yin, Zhumin Chen, Pengjie Ren, Suzan Verberne, Zhaochun Ren
- Abstract要約: ツール学習は、大きな言語モデル(LLM)をエージェントとして、その能力を拡張するために外部ツールを使用する権限を与える。
既存の手法では、1つのLCMベースのエージェントを使用してツールを反復的に選択し実行し、その結果を次のアクション予測に組み込む。
本研究では,協調型対話型エージェントフレームワークであるConAgentsを提案し,ツール学習のワークフローをグラウンディング,実行,監視エージェントにモジュール化する。
- 参考スコア(独自算出の注目度): 61.662788490607475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tool learning empowers large language models (LLMs) as agents to use external
tools to extend their capability. Existing methods employ one single LLM-based
agent to iteratively select and execute tools, thereafter incorporating the
result into the next action prediction. However, they still suffer from
potential performance degradation when addressing complex tasks due to: (1) the
limitation of the inherent capability of a single LLM to perform diverse
actions, and (2) the struggle to adaptively correct mistakes when the task
fails. To mitigate these problems, we propose the ConAgents, a Cooperative and
interactive Agents framework, which modularizes the workflow of tool learning
into Grounding, Execution, and Observing agents. We also introduce an iterative
calibration (IterCali) method, enabling the agents to adapt themselves based on
the feedback from the tool environment. Experiments conducted on three datasets
demonstrate the superiority of our ConAgents (e.g., 6 point improvement over
the SOTA baseline). We further provide fine-granularity analysis for the
efficiency and consistency of our framework.
- Abstract(参考訳): ツール学習は、大きな言語モデル(LLM)をエージェントとして、外部ツールを使用して能力を拡張する。
既存の方法は単一のllmベースのエージェントを使用して反復的にツールを選択し実行し、その結果を次のアクション予測に組み込む。
しかし,(1)多様な動作を行うための単一のllmの固有能力の制限,(2)タスクが失敗した場合の誤りを適応的に修正する努力,などにより,複雑なタスクに対処する際の潜在的な性能低下に苦しむ。
これらの問題を緩和するために,ツール学習のワークフローをグラウンディング,実行,監視エージェントにモジュール化した協調対話型エージェントフレームワークであるConAgentsを提案する。
また,反復キャリブレーション(itercali)手法を導入し,ツール環境からのフィードバックに基づいてエージェントが適応できるようにする。
3つのデータセットで実施された実験は、ConAgentsの優位性を示す(例:SOTAベースラインよりも6点改善)。
さらに,フレームワークの効率性と一貫性について,粒度解析を行う。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - MorphAgent: Empowering Agents through Self-Evolving Profiles and Decentralized Collaboration [8.078098082305575]
本稿では,分散マルチエージェントコラボレーションのための新しいフレームワークであるMorphAgentを紹介する。
MorphAgentは3つの主要なメトリクスで最適化された自己進化エージェントプロファイルを使用している。
実験の結果,MorphAgentはタスク性能や要求の変化に対する適応性という点で従来の静的ロールMASよりも優れていた。
論文 参考訳(メタデータ) (2024-10-19T09:10:49Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
反復的なステップレベルプロセスリファインメント(IPR)フレームワークは、エージェントトレーニングを強化するためのステップバイステップのガイダンスを提供する。
3つの複雑なエージェントタスクに関する我々の実験は、我々のフレームワークが様々な強力なベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2024-06-17T03:29:13Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
オープンソースのLarge Language Models(LLM)は、さまざまなNLPタスクで大きな成功を収めていますが、エージェントとして振る舞う場合、それでもAPIベースのモデルよりもはるかに劣っています。
本稿では,(1) エージェント学習コーパスを,(1) エージェント学習データの分布から大きくシフトするエージェント推論と,(2) エージェントタスクが必要とする能力に異なる学習速度を示すエージェント学習コーパスと,(3) 幻覚を導入することでエージェント能力を改善する際の副作用について述べる。
本稿では,エージェントのためのFLANモデルを効果的に構築するためのエージェントFLANを提案する。
論文 参考訳(メタデータ) (2024-03-19T16:26:10Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - A Unified and Efficient Coordinating Framework for Autonomous DBMS
Tuning [34.85351481228439]
既存のMLベースのエージェントを効率的に活用するための統合コーディネートフレームワークを提案する。
機械学習ベースのエージェントを効果的に利用し、ワークロードの実行時間に1.414.1Xのスピードアップでより良い設定を実現できることを示す。
論文 参考訳(メタデータ) (2023-03-10T05:27:23Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Toward Policy Explanations for Multi-Agent Reinforcement Learning [18.33682005623418]
MARLのための2種類のポリシー記述を生成するための新しい手法を提案する。
3つのMARL領域の実験結果から,提案手法のスケーラビリティが実証された。
ユーザスタディでは、生成された説明がユーザパフォーマンスを著しく改善し、ユーザ満足度などの指標に対する主観的評価が向上することを示した。
論文 参考訳(メタデータ) (2022-04-26T20:07:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。