論文の概要: Reaching Consensus in Cooperative Multi-Agent Reinforcement Learning
with Goal Imagination
- arxiv url: http://arxiv.org/abs/2403.03172v1
- Date: Tue, 5 Mar 2024 18:07:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 13:50:23.941789
- Title: Reaching Consensus in Cooperative Multi-Agent Reinforcement Learning
with Goal Imagination
- Title(参考訳): ゴールイマジネーションを用いた協調的マルチエージェント強化学習におけるリーチング・コンセンサス
- Authors: Liangzhou Wang, Kaiwen Zhu, Fengming Zhu, Xinghu Yao, Shujie Zhang,
Deheng Ye, Haobo Fu, Qiang Fu, Wei Yang
- Abstract要約: 本稿では,複数のエージェントを協調するモデルに基づくコンセンサス機構を提案する。
提案したMulti-Adnt Goal Imagination (MAGI) フレームワークは、エージェントがImagined Common goalとコンセンサスに達するためのガイドである。
このような効率的なコンセンサス機構は、すべてのエージェントを協調して有用な将来状態に導くことができることを示す。
- 参考スコア(独自算出の注目度): 16.74629849552254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reaching consensus is key to multi-agent coordination. To accomplish a
cooperative task, agents need to coherently select optimal joint actions to
maximize the team reward. However, current cooperative multi-agent
reinforcement learning (MARL) methods usually do not explicitly take consensus
into consideration, which may cause miscoordination problem. In this paper, we
propose a model-based consensus mechanism to explicitly coordinate multiple
agents. The proposed Multi-agent Goal Imagination (MAGI) framework guides
agents to reach consensus with an Imagined common goal. The common goal is an
achievable state with high value, which is obtained by sampling from the
distribution of future states. We directly model this distribution with a
self-supervised generative model, thus alleviating the "curse of dimensinality"
problem induced by multi-agent multi-step policy rollout commonly used in
model-based methods. We show that such efficient consensus mechanism can guide
all agents cooperatively reaching valuable future states. Results on
Multi-agent Particle-Environments and Google Research Football environment
demonstrate the superiority of MAGI in both sample efficiency and performance.
- Abstract(参考訳): 合意の獲得はマルチエージェント調整の鍵となる。
協力的なタスクを達成するためには、エージェントはチーム報酬を最大化するために最適な共同行動を選択する必要がある。
しかしながら、現在の協調型マルチエージェント強化学習(MARL)法は、通常、明示的にはコンセンサスを考慮しない。
本稿では,複数のエージェントを協調するモデルに基づくコンセンサス機構を提案する。
提案したMulti-Adnt Goal Imagination (MAGI) フレームワークは、エージェントがImagined Common goalと合意に達するためのガイドとなる。
共通の目標は、将来の状態の分布からサンプリングすることで得られる、高い値の達成可能な状態である。
我々は,この分布を自己教師付き生成モデルを用いて直接モデル化することで,モデルベース手法で一般的に用いられるマルチエージェントマルチステップポリシロールアウトによって引き起こされる「二元性曲線」問題を緩和する。
このような効率的なコンセンサス機構は,すべてのエージェントが協調して有意義な将来状態に到達することができることを示す。
多エージェント粒子環境とGoogle Research Football環境におけるMAGIの効率と性能の両面での優位性を示す。
関連論文リスト
- Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
MARL(Multi-agent Reinforcement Learning)は、シーケンシャルな意思決定と制御タスクの鍵となるフレームワークである。
これらのシステムを現実のシナリオに展開するには、分散トレーニング、多様なエージェントセット、そして頻繁な環境報酬信号から学ぶ必要がある。
我々は,新しいグラフニューラルネットワーク(GNN)に基づく本質的なモチベーションを利用して,異種エージェントポリシーの学習を容易にするCoHetアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-12T21:38:40Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
大規模言語モデルによるエージェントのパイオニア化は、マルチエージェントコラボレーションの設計パターンを暗示している。
神経スケーリング法則に触発された本研究では,マルチエージェント協調におけるエージェントの増加に類似の原理が適用されるかを検討する。
論文 参考訳(メタデータ) (2024-06-11T11:02:04Z) - COMBO: Compositional World Models for Embodied Multi-Agent Cooperation [64.27636858152522]
分散エージェントは、世界の部分的な自我中心的な見解にのみ、協力しなくてはならない。
我々は、部分的な自我中心の観測から世界全体の状態を推定するために生成モデルを訓練する。
複数のエージェントの自然な構成可能な共同動作を分解することにより、マルチエージェント協調のための構成的世界モデルを学ぶ。
論文 参考訳(メタデータ) (2024-04-16T17:59:11Z) - Multi-Agent Consensus Seeking via Large Language Models [6.922356864800498]
大規模言語モデル(LLM)によって駆動されるマルチエージェントシステムは、複雑なタスクを協調的に解決する有望な能力を示している。
この研究は、マルチエージェントコラボレーションにおける根本的な問題であるコンセンサス探索について考察する。
論文 参考訳(メタデータ) (2023-10-31T03:37:11Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Iterated Reasoning with Mutual Information in Cooperative and Byzantine
Decentralized Teaming [0.0]
我々は,政策グラディエント(PG)の下での最適化において,エージェントの方針がチームメイトの方針に準じることが,本質的に相互情報(MI)の下限を最大化することを示す。
我々の手法であるInfoPGは、創発的協調行動の学習におけるベースラインを上回り、分散協調型MARLタスクにおける最先端の課題を設定します。
論文 参考訳(メタデータ) (2022-01-20T22:54:32Z) - Modeling the Interaction between Agents in Cooperative Multi-Agent
Reinforcement Learning [2.9360071145551068]
対話型アクター・クリティック(IAC)と呼ばれる新しい協調型MARLアルゴリズムを提案する。
IACは政策と価値関数の観点からエージェントの相互作用をモデル化する。
連続制御タスクに値分解手法を拡張し、古典的な制御やマルチエージェント粒子環境を含むベンチマークタスク上でIACを評価する。
論文 参考訳(メタデータ) (2021-02-10T01:58:28Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。