論文の概要: Solving the Clustering Reasoning Problems by Modeling a Deep-Learning-Based Probabilistic Model
- arxiv url: http://arxiv.org/abs/2403.03173v8
- Date: Thu, 13 Jun 2024 09:41:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 23:35:40.779195
- Title: Solving the Clustering Reasoning Problems by Modeling a Deep-Learning-Based Probabilistic Model
- Title(参考訳): 深層学習に基づく確率モデルによるクラスタリング推論問題の解法
- Authors: Ruizhuo Song, Beiming Yuan,
- Abstract要約: 我々は,Bongard-Logoで高い推論精度を実現する深層学習に基づく確率モデルであるPMoCを紹介する。
また,複雑な視覚的抽象的推論タスクのためのPose-Transformerを設計した。
- 参考スコア(独自算出の注目度): 1.7955614278088239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual abstract reasoning problems pose significant challenges to the perception and cognition abilities of artificial intelligence algorithms, demanding deeper pattern recognition and inductive reasoning beyond mere identification of explicit image features. Research advancements in this field often provide insights and technical support for other similar domains. In this study, we introduce PMoC, a deep-learning-based probabilistic model, achieving high reasoning accuracy in the Bongard-Logo, which stands as one of the most challenging clustering reasoning tasks. PMoC is a novel approach for constructing probabilistic models based on deep learning, which is distinctly different from previous techniques. PMoC revitalizes the probabilistic approach, which has been relatively weak in visual abstract reasoning. As a bonus, we also designed Pose-Transformer for complex visual abstract reasoning tasks. Inspired by capsule networks, it focuses on positional relationships in image data, boosting accuracy when combined with PMoC. Our Pose-Transformer effectively addresses reasoning difficulties associated with changes in the position of entities, outperforming previous models on RAVEN dataset, and the PGM dataset. RAVEN and PGM represent two significant progressive pattern reasoning problems. Finally, considering the deployment difficulties of Pose-Transformer, we introduced Straw-Pose-Transformer, a lightweight version. This study contributes to enhancing the capabilities of artificial intelligence in abstract reasoning, cognitive pattern, and probabilistic modeling of complex systems.
- Abstract(参考訳): 視覚的抽象的推論問題は、人工知能アルゴリズムの知覚と認識能力に重大な課題をもたらし、明示的な画像特徴の単なる識別以上のパターン認識と帰納的推論を要求する。
この分野での研究の進歩は、しばしば他の類似のドメインに対する洞察と技術的支援を提供する。
本研究では,Bongard-Logoのクラスタリング推論タスクにおいて高い推論精度を実現する,ディープラーニングに基づく確率モデルであるPMoCを紹介する。
PMoCは、ディープラーニングに基づく確率モデルを構築するための新しいアプローチである。
PMoCは視覚的抽象的推論において比較的弱い確率論的アプローチを再活性化する。
また,複雑な視覚的抽象的推論タスクのためのPose-Transformerを設計した。
カプセルネットワークに触発され、画像データの位置関係に焦点が当てられ、PMoCと組み合わせると精度が向上する。
我々のPose-Transformerは、エンティティの位置の変化に伴う推論の困難を効果的に解決し、RAVENデータセットやPGMデータセットで以前のモデルより優れている。
RAVENとPGMは2つの重要なプログレッシブパターン推論問題を表す。
最後に、Pose-Transformerのデプロイの難しさを考慮して、軽量バージョンであるStraw-Pose-Transformerを紹介した。
本研究は,複合システムの抽象的推論,認知パターン,確率論的モデリングにおける人工知能の能力向上に寄与する。
関連論文リスト
- Coding for Intelligence from the Perspective of Category [66.14012258680992]
符号化の対象はデータの圧縮と再構成、インテリジェンスである。
最近の傾向は、これらの2つの分野の潜在的均一性を示している。
本稿では,カテゴリ理論の観点から,インテリジェンスのためのコーディングの新たな問題を提案する。
論文 参考訳(メタデータ) (2024-07-01T07:05:44Z) - Verbalized Probabilistic Graphical Modeling with Large Language Models [8.961720262676195]
この研究は、大規模言語モデルによる学習自由ベイズ推論を促進する新しいベイズ急進的アプローチを導入している。
本研究は,AI言語理解システムの改善の可能性を示すとともに,信頼性評価とテキスト生成品質を効果的に向上させることを示唆する。
論文 参考訳(メタデータ) (2024-06-08T16:35:31Z) - Uncertainty in latent representations of variational autoencoders optimized for visual tasks [4.919240908498475]
可変オートエンコーダ(VAE)の潜時表現における不確実性表現について検討する。
本稿では、EA-VAEと呼ばれる新しい手法が、これらの問題をいかに解決するかを示す。
EA-VAEは、コンピュータ神経科学における知覚のモデルとコンピュータビジョンにおける推論ツールの両方として有用である。
論文 参考訳(メタデータ) (2024-04-23T16:26:29Z) - Fiducial Focus Augmentation for Facial Landmark Detection [4.433764381081446]
本稿では,モデルによる顔構造理解を高めるために,新しい画像強調手法を提案する。
我々は,Deep Canonical correlation Analysis (DCCA) に基づく損失を考慮した,シームズアーキテクチャに基づくトレーニング機構を採用している。
提案手法は,様々なベンチマークデータセットにおいて,最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2024-02-23T01:34:00Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Learning to reason over visual objects [6.835410768769661]
対象物の観点から視覚シーンを処理するための汎用メカニズムが,抽象的な視覚的推論を促進するのにどの程度役立つかを検討する。
我々は、オブジェクト中心処理の帰納バイアスが抽象的な視覚的推論の鍵となることを発見した。
論文 参考訳(メタデータ) (2023-03-03T23:19:42Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
解釈可能性の欠如、堅牢性、分布外一般化が、既存の視覚モデルの課題となっている。
人間レベルのエージェントの強い推論能力にインスパイアされた近年では、因果推論パラダイムの開発に多大な努力が注がれている。
本稿では,この新興分野を包括的に概観し,注目し,議論を奨励し,新たな因果推論手法の開発の急激さを先導することを目的とする。
論文 参考訳(メタデータ) (2022-04-26T02:22:28Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
モデルベース強化学習(RL)のための修正目的を提案する。
相互情報に基づく状態空間モデルに,変分エンパワーメントにインスパイアされた用語を統合する。
本研究は,視覚に基づくロボット制御作業における自然な映像背景を用いたアプローチの評価である。
論文 参考訳(メタデータ) (2022-04-18T23:09:23Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - Explain by Evidence: An Explainable Memory-based Neural Network for
Question Answering [41.73026155036886]
本稿では,エビデンスに基づくメモリネットワークアーキテクチャを提案する。
データセットを要約し、その決定を下すための証拠を抽出することを学ぶ。
本モデルは,2つの質問応答データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2020-11-05T21:18:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。