論文の概要: FFHFlow: A Flow-based Variational Approach for Learning Diverse Dexterous Grasps with Shape-Aware Introspection
- arxiv url: http://arxiv.org/abs/2407.15161v2
- Date: Wed, 18 Dec 2024 09:07:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:46:29.518017
- Title: FFHFlow: A Flow-based Variational Approach for Learning Diverse Dexterous Grasps with Shape-Aware Introspection
- Title(参考訳): FFHFlow:形状認識イントロスペクションを用いた横軸グラフ学習のためのフローベース変分アプローチ
- Authors: Qian Feng, Jianxiang Feng, Zhaopeng Chen, Rudolph Triebel, Alois Knoll,
- Abstract要約: マルチフィンガーハンドの多様なグリップを生成できる新しいモデルを提案する。
提案手法は, 高いベースラインに対する性能向上と実行時の効率向上を実現する。
また,現実世界の雑多な作業空間や密集した作業空間において,より多様性の高いオブジェクトを把握できることのメリットも示している。
- 参考スコア(独自算出の注目度): 19.308304984645684
- License:
- Abstract: Synthesizing diverse dexterous grasps from uncertain partial observation is an important yet challenging task for physically intelligent embodiments. Previous works on generative grasp synthesis fell short of precisely capturing the complex grasp distribution and reasoning about shape uncertainty in the unstructured and often partially perceived reality. In this work, we introduce a novel model that can generate diverse grasps for a multi-fingered hand while introspectively handling perceptual uncertainty and recognizing unknown object geometry to avoid performance degradation. Specifically, we devise a Deep Latent Variable Model (DLVM) based on Normalizing Flows (NFs), facilitating hierarchical and expressive latent representation for modeling versatile grasps. Our model design counteracts typical pitfalls of its popular alternative in generative grasping, i.e., conditional Variational Autoencoders (cVAEs) whose performance is limited by mode collapse and miss-specified prior issues. Moreover, the resultant feature hierarchy and the exact flow likelihood computation endow our model with shape-aware introspective capabilities, enabling it to quantify the shape uncertainty of partial point clouds and detect objects of novel geometry. We further achieve performance gain by fusing this information with a discriminative grasp evaluator, facilitating a novel hybrid way for grasp evaluation. Comprehensive simulated and real-world experiments show that the proposed idea gains superior performance and higher run-time efficiency against strong baselines, including diffusion models. We also demonstrate substantial benefits of greater diversity for grasping objects in clutter and a confined workspace in the real world.
- Abstract(参考訳): 不確実な部分的な観察から多種多様なきめの把握を合成することは、物理的に知的な実施にとって重要な課題である。
生成的グリップ合成に関するこれまでの研究は、複雑なグリップ分布を正確に把握し、非構造的でしばしば部分的に知覚される現実における形状の不確実性について推論するに足りなかった。
本研究では,多指ハンドにおいて,知覚の不確かさを内省的に処理し,性能劣化を避けるために未知の物体形状を認識しながら,多様な把握を生成できる新しいモデルを提案する。
具体的には、正規化フロー(NFs)に基づくDLVM(Deep Latent Variable Model)を考案し、階層的かつ表現的な潜在表現を容易にし、汎用的な把握をモデル化する。
モデル設計は,モード崩壊とミス特定前の問題により性能が制限された条件付き変分オートエンコーダ(cVAEs)の遺伝的把握において,一般的な代替手段の落とし穴に対処する。
さらに, 得られた特徴階層と正確な流速計算により, 形状認識型イントロスペクティブ機能を備え, 部分点雲の形状不確かさを定量化し, 新たな形状の物体を検出することができる。
我々は、この情報を識別的把握評価器と融合させることにより、さらに性能向上を実現し、新たなハイブリッド手法による把握評価を可能にした。
シミュレーションおよび実世界の総合実験により、提案手法は拡散モデルを含む強力なベースラインに対して優れた性能と高い実行時間効率を得ることを示した。
また,現実世界の雑多な作業空間や密集した作業空間において,より多様性の高いオブジェクトを把握できることのメリットも示している。
関連論文リスト
- Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
本稿では,拡張性のある並列計算を可能にするアルゴリズム PISA を開発し,様々な第2モーメント方式をサポートする。
厳密な理論的な保証の下で、アルゴリズムは勾配のリプシッツの唯一の仮定の下で収束する。
視覚モデル、大規模言語モデル、強化学習モデル、生成的敵ネットワーク、繰り返しニューラルネットワークを含む様々なFMの総合的または微調整実験は、様々な最先端の方向と比較して優れた数値性能を示す。
論文 参考訳(メタデータ) (2025-02-15T12:28:51Z) - FlowDAS: A Flow-Based Framework for Data Assimilation [15.64941169350615]
FlowDASは、状態遷移ダイナミクスと生成前の学習を統合するために補間剤を用いた新しい生成モデルベースのフレームワークである。
実験では,ローレンツシステムから高次元流体超解像タスクに至るまで,様々なベンチマークにおいてFlowDASの優れた性能を示す。
論文 参考訳(メタデータ) (2025-01-13T05:03:41Z) - ConsistentFeature: A Plug-and-Play Component for Neural Network Regularization [0.32885740436059047]
過パラメータ化されたニューラルネットワークモデルは、トレーニングとテストセットの間に大きなパフォーマンスの相違をもたらすことが多い。
モデルは異なるデータセットで異なる表現を学習する。
適応的手法であるConsistentFeatureを提案し、同じトレーニングセットのランダムなサブセット間で特徴差を制約することでモデルを正規化する。
論文 参考訳(メタデータ) (2024-12-02T13:21:31Z) - Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition [13.593511876719367]
教師なし表現学習のための新しい骨格ベース等等化生成モデル(IGM)を提案する。
ベンチマークデータセットであるNTU RGB+DとPKUMMDに関する実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-27T06:29:04Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
本稿では,豊富な生成前駆体を含む事前学習型安定拡散(SD)モデルと,階層的表現を統合可能な統一型ヘッド(Uヘッド)と,識別前駆体を提供する適応型専門家からなる,シンプルで効果的なフレームワークを提案する。
包括的調査では、異なる時間ステップで潜伏変数に隠された知覚の粒度や様々なU-netステージなど、バーマスの潜在的な特性が明らかになった。
有望な結果は,有望な学習者としての拡散モデルの可能性を示し,情報的かつ堅牢な視覚表現の確立にその意義を定めている。
論文 参考訳(メタデータ) (2024-01-29T10:36:57Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Self-Regression Learning for Blind Hyperspectral Image Fusion Without
Label [11.291055330647977]
ハイパースペクトル画像(HSI)を再構築した自己回帰学習法を提案し,観察モデルを推定する。
特に,hsiを復元するinvertible neural network (inn) と,観測モデルを推定する2つの完全連結ネットワーク (fcn) を採用している。
我々のモデルは、合成データと実世界のデータセットの両方で実験で最先端の手法を上回ることができる。
論文 参考訳(メタデータ) (2021-03-31T04:48:21Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。