論文の概要: Knowledge-guided EEG Representation Learning
- arxiv url: http://arxiv.org/abs/2403.03222v1
- Date: Thu, 15 Feb 2024 01:52:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-10 23:52:13.176921
- Title: Knowledge-guided EEG Representation Learning
- Title(参考訳): 知識誘導型脳波表現学習
- Authors: Aditya Kommineni, Kleanthis Avramidis, Richard Leahy, Shrikanth
Narayanan
- Abstract要約: 自己教師付き学習は、音声、視覚、および音声のマルチメディア領域において印象的な結果をもたらした。
本稿では,脳波の自己教師型モデルを提案する。
また,脳波信号の慣用性を考慮した知識誘導事前学習手法を提案する。
- 参考スコア(独自算出の注目度): 27.8095014391814
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Self-supervised learning has produced impressive results in multimedia
domains of audio, vision and speech. This paradigm is equally, if not more,
relevant for the domain of biosignals, owing to the scarcity of labelled data
in such scenarios. The ability to leverage large-scale unlabelled data to learn
robust representations could help improve the performance of numerous inference
tasks on biosignals. Given the inherent domain differences between multimedia
modalities and biosignals, the established objectives for self-supervised
learning may not translate well to this domain. Hence, there is an unmet need
to adapt these methods to biosignal analysis. In this work we propose a
self-supervised model for EEG, which provides robust performance and remarkable
parameter efficiency by using state space-based deep learning architecture. We
also propose a novel knowledge-guided pre-training objective that accounts for
the idiosyncrasies of the EEG signal. The results indicate improved embedding
representation learning and downstream performance compared to prior works on
exemplary tasks. Also, the proposed objective significantly reduces the amount
of pre-training data required to obtain performance equivalent to prior works.
- Abstract(参考訳): 自己教師付き学習は、オーディオ、視覚、音声のマルチメディア領域において印象的な結果を生み出している。
このパラダイムは、そのようなシナリオにおけるラベル付きデータの不足のため、バイオシグナリングの領域に等しく関係しています。
大規模な非ラベルデータを利用して堅牢な表現を学ぶ能力は、生体信号に対する多数の推論タスクのパフォーマンスを向上させるのに役立つ。
マルチメディアモダリティと生体信号の固有のドメイン差を考えると、自己教師型学習の確立された目的はこの領域にうまく翻訳されないかもしれない。
したがって、これらの手法を生体信号解析に適応させる必要がなくなる。
本研究では、状態空間に基づくディープラーニングアーキテクチャを用いて、堅牢な性能と顕著なパラメータ効率を提供するEEGの自己教師型モデルを提案する。
また,脳波信号の特異性を考慮した新しい知識誘導前学習目標を提案する。
その結果, 従来の模範課題と比較すると, 組込み表現学習と下流性能が向上した。
また,提案手法は,先行作業と同等の性能を得るために必要な事前学習データの量を大幅に削減する。
関連論文リスト
- EEGFormer: Towards Transferable and Interpretable Large-Scale EEG
Foundation Model [39.363511340878624]
大規模複合脳波データに基づいて事前学習した脳波基礎モデル,すなわちEEGFormerを提案する。
本モデルの有効性を検証するため,様々な下流タスクにおいて広範囲に評価し,異なる転送条件下での性能を評価する。
論文 参考訳(メタデータ) (2024-01-11T17:36:24Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - Learning ECG signal features without backpropagation [0.0]
時系列型データの表現を生成する新しい手法を提案する。
この方法は理論物理学の考えに頼り、データ駆動方式でコンパクトな表現を構築する。
本稿では,ECG信号分類の課題に対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2023-07-04T21:35:49Z) - In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene
Classification [5.323049242720532]
リモートセンシング画像分類のための有望なアプローチとして,自己教師付き学習が登場している。
そこで本研究では,14の下流データセットにまたがる自己教師型事前学習戦略について検討し,その効果を評価する。
論文 参考訳(メタデータ) (2023-07-04T10:57:52Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - BENDR: using transformers and a contrastive self-supervised learning
task to learn from massive amounts of EEG data [15.71234837305808]
言語モデリング(LM)の手法とアーキテクチャを脳波モデリング(EM)に適用する方法を検討する。
1つの事前学習モデルが、異なるハードウェアで記録された全く新しい生の脳波シーケンスをモデル化できることがわかった。
このモデルの内部表現とアーキテクチャ全体は、さまざまな下流のBCIおよびEEG分類タスクに微調整することができる。
論文 参考訳(メタデータ) (2021-01-28T14:54:01Z) - Unsupervised Multi-Modal Representation Learning for Affective Computing
with Multi-Corpus Wearable Data [16.457778420360537]
我々は、人間の監督への依存を減らすために、教師なしの枠組みを提案する。
提案フレームワークは2つの畳み込み自己エンコーダを用いて、ウェアラブル心電図(ECG)と電磁気放射能(EDA)信号から潜時表現を学習する。
提案手法は, 同一のデータセット上での覚醒検出を行ない, 現状の成果よりも優れていた。
論文 参考訳(メタデータ) (2020-08-24T22:01:55Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。