論文の概要: TartanAviation: Image, Speech, and ADS-B Trajectory Datasets for
Terminal Airspace Operations
- arxiv url: http://arxiv.org/abs/2403.03372v1
- Date: Tue, 5 Mar 2024 23:37:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 16:33:09.433783
- Title: TartanAviation: Image, Speech, and ADS-B Trajectory Datasets for
Terminal Airspace Operations
- Title(参考訳): TartanAviation:端末空域運用のための画像・音声・ADS-B軌道データセット
- Authors: Jay Patrikar, Joao Dantas, Brady Moon, Milad Hamidi, Sourish Ghosh,
Nikhil Keetha, Ian Higgins, Atharva Chandak, Takashi Yoneyama, and Sebastian
Scherer
- Abstract要約: TartanAviationは、画像、音声、およびADS-B軌道データを同時に収集することで、空港環境の全体像を提供する。
タルタンアビエーションは合計で3.1M画像、3374時間の航空交通管制音声データ、661日のADS-B軌道データを提供している。
- 参考スコア(独自算出の注目度): 2.738514570149472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce TartanAviation, an open-source multi-modal dataset focused on
terminal-area airspace operations. TartanAviation provides a holistic view of
the airport environment by concurrently collecting image, speech, and ADS-B
trajectory data using setups installed inside airport boundaries. The datasets
were collected at both towered and non-towered airfields across multiple months
to capture diversity in aircraft operations, seasons, aircraft types, and
weather conditions. In total, TartanAviation provides 3.1M images, 3374 hours
of Air Traffic Control speech data, and 661 days of ADS-B trajectory data. The
data was filtered, processed, and validated to create a curated dataset. In
addition to the dataset, we also open-source the code-base used to collect and
pre-process the dataset, further enhancing accessibility and usability. We
believe this dataset has many potential use cases and would be particularly
vital in allowing AI and machine learning technologies to be integrated into
air traffic control systems and advance the adoption of autonomous aircraft in
the airspace.
- Abstract(参考訳): 我々は,ターミナルエリアの空域操作に特化したオープンソースのマルチモーダルデータセットであるtartanaviationを紹介する。
TartanAviationは、空港境界内に設置された設定を用いて、画像、音声、ADS-B軌道データを同時に収集することで、空港環境の全体像を提供する。
データセットは、航空機の運用、季節、航空機の種類、気象条件の多様性を捉えるために、数ヶ月にわたって、塔と塔のない飛行場の両方で収集された。
タルタンアビエーションは合計で3.1M画像、3374時間の航空交通管制音声データ、661日のADS-B軌道データを提供している。
データはフィルタリングされ、処理され、検証され、キュレートされたデータセットを生成する。
データセットに加えて、データセットの収集と事前処理に使用されるコードベースもオープンソース化し、アクセシビリティとユーザビリティをさらに強化しています。
このデータセットには潜在的なユースケースが多数あり、特にAIと機械学習技術を航空交通制御システムに統合し、空域における自律航空機の採用を促進する上で不可欠であると考えています。
関連論文リスト
- Big data-driven prediction of airspace congestion [40.02298833349518]
国立航空宇宙システム(NAS)内の特定の空域セクターの航空機数を正確に予測する新しいデータ管理・予測システムを提案する。
前処理ステップでは、システムは受信した生データを処理し、それをコンパクトなサイズに減らし、コンパクトなデータベースに格納する。
予測段階において、システムは歴史的軌跡から学習し、そのセグメントを使用して、セクター境界交差、気象パラメータ、その他の航空交通データなどの重要な特徴を収集する。
論文 参考訳(メタデータ) (2023-10-13T09:57:22Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - LARD - Landing Approach Runway Detection -- Dataset for Vision Based
Landing [2.7400353551392853]
本稿では,接近・着陸時の滑走路検出のための高品質な空中画像のデータセットを提案する。
データセットの大部分は合成画像で構成されていますが、実際の着陸映像から手動でラベル付けされた画像も提供しています。
このデータセットは、データセットの品質の分析や、検出タスクに対処するモデルの開発など、さらなる研究の道を開く。
論文 参考訳(メタデータ) (2023-04-05T08:25:55Z) - VPAIR -- Aerial Visual Place Recognition and Localization in Large-scale
Outdoor Environments [49.82314641876602]
VPAIRという新しいデータセットを提示します。
データセットは地上300メートル以上の高度で飛行する軽航空機に記録されている。
このデータセットは、様々なタイプの挑戦的な風景を、100km以上にわたってカバーしている。
論文 参考訳(メタデータ) (2022-05-23T18:50:08Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
本稿では,機械学習を用いた衛星画像時系列解析のためのオープンソースRパッケージである sit について述べる。
本手法は, Cerrado Biome のケーススタディにより, 土地利用と土地被覆マップの精度が高いことを示す。
論文 参考訳(メタデータ) (2022-04-24T15:23:25Z) - A benchmark dataset for deep learning-based airplane detection: HRPlanes [3.5297361401370044]
Google Earth(GE)の画像を用いて,高分解能平面(HRPlanes)と呼ばれる新しい航空機検出データセットを作成する。
HRPlanは、様々な衛星から得られた様々な地形、季節、衛星の幾何学的条件を表すために、世界中の様々な空港のGE画像を含む。
予備的な結果から,提案したデータセットは将来のアプリケーションに有用なデータソースとベンチマークデータセットとなる可能性が示唆された。
論文 参考訳(メタデータ) (2022-04-22T23:49:44Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - A Simplified Framework for Air Route Clustering Based on ADS-B Data [0.0]
本稿では,ADS-Bデータに基づく空港間の典型的な航空路の検出を支援する枠組みを提案する。
実のところ,エアフロー最適化の計算コストを実質的に低減するために,我々の枠組みを考慮に入れることができる。
論文 参考訳(メタデータ) (2021-07-07T08:55:31Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z) - AU-AIR: A Multi-modal Unmanned Aerial Vehicle Dataset for Low Altitude
Traffic Surveillance [20.318367304051176]
カメラを搭載した無人航空機(UAV)は、空中(バードビュー)画像を撮影する利点がある。
オブジェクトアノテーションによる視覚データを含む、いくつかの空中データセットが導入されている。
本研究では,実環境下で収集されたマルチモーダルセンサデータを有する多目的航空データセット(AU-AIR)を提案する。
論文 参考訳(メタデータ) (2020-01-31T09:45:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。