Aharonov-Bohm effect mediated by massive photons
- URL: http://arxiv.org/abs/2403.03495v1
- Date: Wed, 6 Mar 2024 06:40:16 GMT
- Title: Aharonov-Bohm effect mediated by massive photons
- Authors: Kicheon Kang
- Abstract summary: We show that the effect of virtual photons in the interferometer is manifested by a change in their spectrum.
On the other hand, a semiclassical description is also possible, and this raises the interesting question of how to prove the physical reality of virtual photons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Virtual photons play an essential role in the locally realistic description
of the Aharonov-Bohm interference. We show that the effect of virtual photons
in the interferometer is manifested by a change in their spectrum. In
particular, when a vacuum is confined between two ideal conducting plates, the
photons obey the two-dimensional Proca equation, the wave equation with finite
effective mass. This results in a short-range interaction between a test charge
and a magnetic flux, and hence the Aharonov-Bohm effect is reduced
exponentially at a large distance between the two bodies. On the other hand, a
semiclassical description is also possible, and this raises the interesting
question of how to prove the physical reality of virtual photons.
Related papers
- Entanglement-induced collective many-body interference [62.22849132943891]
We propose an interferometric setting through which N-particle interference can be observed, while any interference of lower orders is strictly suppressed.
We experimentally demonstrate this effect in a four-photon interferometer, where the interference is nonlocal, in principle.
A joint detection of all four photons identifies a high-visibility interference pattern varying as a function of their collective four-particle phase, a genuine four-body property.
arXiv Detail & Related papers (2023-10-12T18:00:02Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - An Easier-To-Align Hong-Ou-Mandel Interference Demonstration [0.0]
Hong-Ou-Mandel interference experiment is a fundamental demonstration of nonclassical interference.
Experiment involves the interference of two photons reaching a symmetric beamsplitter.
arXiv Detail & Related papers (2023-01-17T20:12:03Z) - Multi-photon interference phenomena [0.0]
I show that three-photon interference is governed by four parameters and measure three-photon interference independent of two-photon interference.
I demonstrate that even when the states of the photons are highly distinguishable they can still exhibit strong quantum interference.
I present a new framework to describe multi-photon interference in terms of a graph-theoretical approach.
arXiv Detail & Related papers (2022-09-07T02:43:18Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Boson bunching is not maximized by indistinguishable particles [0.0]
Boson bunching is one of the most remarkable features of quantum physics.
We disproof the link between indistinguishability and bunching by exploiting a recent finding in the theory of matrix permanents.
This unexpected behavior questions our understanding of multiparticle interference in the grey zone between indistinguishable bosons and classical particles.
arXiv Detail & Related papers (2022-03-02T18:50:48Z) - Exact solution of a non-stationary cavity with one intermode interaction [0.0]
A non-stationary one-dimensional cavity can be described by the time-dependent and multi-mode effective Hamiltonian of the so-called dynamical Casimir effect.
We show that for any set of functions parameterizing the effective Hamiltonian, the corresponding time-dependent Schr"odinger equation admits an exact solution when the cavity has one intermode interaction.
arXiv Detail & Related papers (2021-07-02T01:13:36Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Wave-particle duality using the Compton effect [0.0]
We study the consequences of the beam-splitter recoil, during the passage of the photon, over the interference pattern produced by the device.
Fortuitously, the model used to describe the interaction between the idealized beam-splitter and the photon clearly indicates that an interferometer based on Compton's effect could be build to study wave-particle duality.
arXiv Detail & Related papers (2020-05-06T16:23:56Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.