EXPRTS: Exploring and Probing the Robustness of Time Series Forecasting Models
- URL: http://arxiv.org/abs/2403.03508v3
- Date: Fri, 27 Jun 2025 20:55:29 GMT
- Title: EXPRTS: Exploring and Probing the Robustness of Time Series Forecasting Models
- Authors: Håkon Hanisch Kjærnli, Lluis Mas-Ribas, Hans Jakob Håland, Vegard Sjåvik, Aida Ashrafi, Helge Langseth, Odd Erik Gundersen,
- Abstract summary: We develop an interpretable and simple framework for generating time series.<n>Our method combines time-series decompositions with analytic functions, and is able to generate time series with characteristics matching both in- and out-of-distribution data.<n>We show how our framework can generate meaningful OOD time series that improve model robustness.
- Score: 1.23187154417297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When deploying time series forecasting models based on machine learning to real world settings, one often encounter situations where the data distribution drifts. Such drifts expose the forecasting models to out-of-distribution (OOD) data, and machine learning models lack robustness in these settings. Robustness can be improved by using deep generative models or genetic algorithms to augment time series datasets, but these approaches lack interpretability and are computationally expensive. In this work, we develop an interpretable and simple framework for generating time series. Our method combines time-series decompositions with analytic functions, and is able to generate time series with characteristics matching both in- and out-of-distribution data. This approach allows users to generate new time series in an interpretable fashion, which can be used to augment the dataset and improve forecasting robustness. We demonstrate our framework through EXPRTS, a visual analytics tool designed for univariate time series forecasting models and datasets. Different visualizations of the data distribution, forecasting errors and single time series instances enable users to explore time series datasets, apply transformations, and evaluate forecasting model robustness across diverse scenarios. We show how our framework can generate meaningful OOD time series that improve model robustness, and we validate EXPRTS effectiveness and usability through three use-cases and a user study.
Related papers
- Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting [64.45587649141842]
Time-series forecasting plays a critical role in many real-world applications.<n>No single model consistently outperforms others across different test samples, but instead (ii) each model excels in specific cases.<n>We introduce TimeFuse, a framework for collective time-series forecasting with sample-level adaptive fusion of heterogeneous models.
arXiv Detail & Related papers (2025-05-24T00:45:07Z) - Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting through a dynamic feedback mechanism inspired by predictive coding.
Our method involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on current data.
We validate our approach on a variety of tasks, demonstrating a 44.8% increase in AUC-ROC for seizure prediction using EEG data, and a 48.7% reduction in MSE for forecasting in nonlinear dynamical systems.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - Test Time Learning for Time Series Forecasting [1.4605709124065924]
Test-Time Training (TTT) modules consistently outperform state-of-the-art models, including the Mamba-based TimeMachine.<n>Our results show significant improvements in Mean Squared Error (MSE) and Mean Absolute Error (MAE)<n>This work sets a new benchmark for time-series forecasting and lays the groundwork for future research in scalable, high-performance forecasting models.
arXiv Detail & Related papers (2024-09-21T04:40:08Z) - TimeInf: Time Series Data Contribution via Influence Functions [8.018453062120916]
TimeInf is a data contribution estimation method for time-series datasets.
Our empirical results demonstrate that TimeInf outperforms state-of-the-art methods in identifying harmful anomalies.
TimeInf offers intuitive and interpretable attributions of data values, allowing us to easily distinguish diverse anomaly patterns through visualizations.
arXiv Detail & Related papers (2024-07-21T19:10:40Z) - Stochastic Diffusion: A Diffusion Based Model for Stochastic Time Series Forecasting [8.232475807691255]
We propose a novel Diffusion (StochDiff) model which learns data-driven prior knowledge at each time step.<n>The learnt prior knowledge helps the model to capture complex temporal dynamics and the inherent uncertainty of the data.
arXiv Detail & Related papers (2024-06-05T00:13:38Z) - Scaling Law for Time Series Forecasting [8.967263259533036]
Scaling law that rewards large datasets, complex models and enhanced data granularity has been observed in various fields of deep learning.
Yet, studies on time series forecasting have cast doubt on scaling behaviors of deep learning methods for time series forecasting.
We propose a theory for scaling law for time series forecasting that can explain these seemingly abnormal behaviors.
arXiv Detail & Related papers (2024-05-24T00:46:27Z) - TimeGPT in Load Forecasting: A Large Time Series Model Perspective [38.92798207166188]
Machine learning models have made significant progress in load forecasting, but their forecast accuracy is limited in cases where historical load data is scarce.
This paper aims to discuss the potential of large time series models in load forecasting with scarce historical data.
arXiv Detail & Related papers (2024-04-07T09:05:09Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronos is a framework for pretrained probabilistic time series models.
We show that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks.
arXiv Detail & Related papers (2024-03-12T16:53:54Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Self-Adaptive Forecasting for Improved Deep Learning on Non-Stationary
Time-Series [20.958959332978726]
SAF integrates a self-adaptation stage prior to forecasting based on backcasting'
Our method enables efficient adaptation of encoded representations to evolving distributions, leading to superior generalization.
On synthetic and real-world datasets in domains where time-series data are known to be notoriously non-stationary, such as healthcare and finance, we demonstrate a significant benefit of SAF.
arXiv Detail & Related papers (2022-02-04T21:54:10Z) - Learning Non-Stationary Time-Series with Dynamic Pattern Extractions [16.19692047595777]
State-of-the-art algorithms have achieved a decent performance in dealing with stationary temporal data.
Traditional algorithms that tackle stationary time-series do not apply to non-stationary series like Forex trading.
This paper investigates applicable models that can improve the accuracy of forecasting future trends of non-stationary time-series sequences.
arXiv Detail & Related papers (2021-11-20T10:52:37Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
We simulate time series from simple data generating processes (DGP), such as Auto Regressive (AR) and Seasonal AR, to complex DGPs, such as Chaotic Logistic Map, Self-Exciting Threshold Auto-Regressive, and Mackey-Glass equations.
The lengths and the number of series in the dataset are varied in different scenarios.
We perform experiments on these datasets using global forecasting models including Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) models, and Light Gradient Boosting Models (LGBM)
arXiv Detail & Related papers (2020-12-23T04:45:52Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z) - Deep Transformer Models for Time Series Forecasting: The Influenza
Prevalence Case [2.997238772148965]
Time series data are prevalent in many scientific and engineering disciplines.
We present a new approach to time series forecasting using Transformer-based machine learning models.
We show that the forecasting results produced by our approach are favorably comparable to the state-of-the-art.
arXiv Detail & Related papers (2020-01-23T00:22:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.