TimeGPT in Load Forecasting: A Large Time Series Model Perspective
- URL: http://arxiv.org/abs/2404.04885v1
- Date: Sun, 7 Apr 2024 09:05:09 GMT
- Title: TimeGPT in Load Forecasting: A Large Time Series Model Perspective
- Authors: Wenlong Liao, Fernando Porte-Agel, Jiannong Fang, Christian Rehtanz, Shouxiang Wang, Dechang Yang, Zhe Yang,
- Abstract summary: Machine learning models have made significant progress in load forecasting, but their forecast accuracy is limited in cases where historical load data is scarce.
This paper aims to discuss the potential of large time series models in load forecasting with scarce historical data.
- Score: 38.92798207166188
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning models have made significant progress in load forecasting, but their forecast accuracy is limited in cases where historical load data is scarce. Inspired by the outstanding performance of large language models (LLMs) in computer vision and natural language processing, this paper aims to discuss the potential of large time series models in load forecasting with scarce historical data. Specifically, the large time series model is constructed as a time series generative pre-trained transformer (TimeGPT), which is trained on massive and diverse time series datasets consisting of 100 billion data points (e.g., finance, transportation, banking, web traffic, weather, energy, healthcare, etc.). Then, the scarce historical load data is used to fine-tune the TimeGPT, which helps it to adapt to the data distribution and characteristics associated with load forecasting. Simulation results show that TimeGPT outperforms the benchmarks (e.g., popular machine learning models and statistical models) for load forecasting on several real datasets with scarce training samples, particularly for short look-ahead times. However, it cannot be guaranteed that TimeGPT is always superior to benchmarks for load forecasting with scarce data, since the performance of TimeGPT may be affected by the distribution differences between the load data and the training data. In practical applications, we can divide the historical data into a training set and a validation set, and then use the validation set loss to decide whether TimeGPT is the best choice for a specific dataset.
Related papers
- Test Time Learning for Time Series Forecasting [1.4605709124065924]
Test-Time Training (TTT) modules consistently outperform state-of-the-art models, including the Mamba-based TimeMachine.
Our results show significant improvements in Mean Squared Error (MSE) and Mean Absolute Error (MAE)
This work sets a new benchmark for time-series forecasting and lays the groundwork for future research in scalable, high-performance forecasting models.
arXiv Detail & Related papers (2024-09-21T04:40:08Z) - Scaling Law for Time Series Forecasting [8.967263259533036]
Scaling law that rewards large datasets, complex models and enhanced data granularity has been observed in various fields of deep learning.
Yet, studies on time series forecasting have cast doubt on scaling behaviors of deep learning methods for time series forecasting.
We propose a theory for scaling law for time series forecasting that can explain these seemingly abnormal behaviors.
arXiv Detail & Related papers (2024-05-24T00:46:27Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronos is a framework for pretrained probabilistic time series models.
We show that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks.
arXiv Detail & Related papers (2024-03-12T16:53:54Z) - Probing the Robustness of Time-series Forecasting Models with
CounterfacTS [1.823020744088554]
We present and publicly release CounterfacTS, a tool to probe the robustness of deep learning models in time-series forecasting tasks.
CounterfacTS has a user-friendly interface that allows the user to visualize, compare and quantify time series data and their forecasts.
arXiv Detail & Related papers (2024-03-06T07:34:47Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
We propose a novel framework, TEMPO, that can effectively learn time series representations.
TEMPO expands the capability for dynamically modeling real-world temporal phenomena from data within diverse domains.
arXiv Detail & Related papers (2023-10-08T00:02:25Z) - Temporal Graph Benchmark for Machine Learning on Temporal Graphs [54.52243310226456]
Temporal Graph Benchmark (TGB) is a collection of challenging and diverse benchmark datasets.
We benchmark each dataset and find that the performance of common models can vary drastically across datasets.
TGB provides an automated machine learning pipeline for reproducible and accessible temporal graph research.
arXiv Detail & Related papers (2023-07-03T13:58:20Z) - Learning Non-Stationary Time-Series with Dynamic Pattern Extractions [16.19692047595777]
State-of-the-art algorithms have achieved a decent performance in dealing with stationary temporal data.
Traditional algorithms that tackle stationary time-series do not apply to non-stationary series like Forex trading.
This paper investigates applicable models that can improve the accuracy of forecasting future trends of non-stationary time-series sequences.
arXiv Detail & Related papers (2021-11-20T10:52:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.