論文の概要: Dcl-Net: Dual Contrastive Learning Network for Semi-Supervised
Multi-Organ Segmentation
- arxiv url: http://arxiv.org/abs/2403.03512v1
- Date: Wed, 6 Mar 2024 07:39:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 15:56:25.436649
- Title: Dcl-Net: Dual Contrastive Learning Network for Semi-Supervised
Multi-Organ Segmentation
- Title(参考訳): Dcl-Net: 半教師付きマルチオーガンセグメンテーションのためのデュアルコントラスト学習ネットワーク
- Authors: Lu Wen, Zhenghao Feng, Yun Hou, Peng Wang, Xi Wu, Jiliu Zhou, Yan Wang
- Abstract要約: 半教師型MOSのための2段階のDual Contrastive Learning Networkを提案する。
ステージ1では、画像間の暗黙的な連続性と類似性を調べるために、類似性に基づくグローバルコントラスト学習を開発する。
ステージ2では,クラス表現をさらに惹きつけるために,臓器を意識した局所的コントラスト学習を提案する。
- 参考スコア(独自算出の注目度): 12.798684146496754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning is a sound measure to relieve the strict demand of
abundant annotated datasets, especially for challenging multi-organ
segmentation . However, most existing SSL methods predict pixels in a single
image independently, ignoring the relations among images and categories. In
this paper, we propose a two-stage Dual Contrastive Learning Network for
semi-supervised MoS, which utilizes global and local contrastive learning to
strengthen the relations among images and classes. Concretely, in Stage 1, we
develop a similarity-guided global contrastive learning to explore the implicit
continuity and similarity among images and learn global context. Then, in Stage
2, we present an organ-aware local contrastive learning to further attract the
class representations. To ease the computation burden, we introduce a mask
center computation algorithm to compress the category representations for local
contrastive learning. Experiments conducted on the public 2017 ACDC dataset and
an in-house RC-OARs dataset has demonstrated the superior performance of our
method.
- Abstract(参考訳): 半教師付き学習は、豊富な注釈付きデータセットの厳密な要求を緩和するための健全な尺度である。
しかし、既存のSSLメソッドの多くは、画像とカテゴリの関係を無視して、1つの画像内のピクセルを独立に予測する。
本稿では,グローバル・ローカル・コントラスト学習を利用して画像とクラス間の関係を強化する,半教師付きMOSのための2段階のデュアルコントラスト学習ネットワークを提案する。
具体的には、第1段階において、画像間の暗黙的な連続性と類似性を探索し、グローバルコンテキストを学ぶために、類似性誘導によるグローバルコントラスト学習を開発する。
そして、第2段階では、オルガンアウェアな局所コントラスト学習を行い、さらにクラス表現を引き付ける。
計算負担を軽減するために,局所的なコントラスト学習のためのカテゴリ表現を圧縮するマスクセンター計算アルゴリズムを導入する。
パブリックな2017 ACDCデータセットと社内RC-OARsデータセットを用いて行った実験は,本手法の優れた性能を示した。
関連論文リスト
- DIAL: Dense Image-text ALignment for Weakly Supervised Semantic Segmentation [8.422110274212503]
弱教師付きセマンティックセグメンテーションアプローチは通常、初期シード生成にクラスアクティベーションマップ(CAM)に依存する。
DALNetは、テキストの埋め込みを利用して、さまざまなレベルの粒度のオブジェクトの包括的理解と正確な位置決めを強化する。
このアプローチは特に、シングルステージの手法として、より効率的なエンドツーエンドプロセスを可能にします。
論文 参考訳(メタデータ) (2024-09-24T06:51:49Z) - Dual Advancement of Representation Learning and Clustering for Sparse and Noisy Images [14.836487514037994]
SNI(Sparse and Noisy Image)は、効果的な表現学習とクラスタリングに重要な課題を提起する。
本稿では、マスク画像モデリングから得られた表現を強化するために、DARLC(Dual Advancement of Representation Learning and Clustering)を提案する。
我々のフレームワークは、局所的な認識性、特異性、関係意味論の理解を高めることによって、表現の学習を改善する包括的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-09-03T10:52:27Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
医用画像の構造を分割するマルチスケールクロススーパービジョンコントラスト学習フレームワークを開発した。
提案手法は,頑健な特徴表現を抽出するために,地上構造と横断予測ラベルに基づくマルチスケール特徴と対比する。
Diceでは最先端の半教師あり手法を3.0%以上上回っている。
論文 参考訳(メタデータ) (2023-06-25T16:55:32Z) - Localized Region Contrast for Enhancing Self-Supervised Learning in
Medical Image Segmentation [27.82940072548603]
本稿では,地域コントラスト(LRC)を統合した新しいコントラスト学習フレームワークを提案する。
提案手法では,Felzenszwalbのアルゴリズムによるスーパーピクセルの同定と,新しいコントラッシブサンプリング損失を用いた局所コントラスト学習を行う。
論文 参考訳(メタデータ) (2023-04-06T22:43:13Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
非コントラスト型言語画像事前学習(nCLIP)の有効性について検討する。
我々は、CLIPとnCLIPを組み合わせたマルチタスクフレームワークであるxCLIPを紹介し、nCLIPが機能セマンティクスの強化にCLIPを支援することを示す。
論文 参考訳(メタデータ) (2022-10-17T17:57:46Z) - Towards Effective Image Manipulation Detection with Proposal Contrastive
Learning [61.5469708038966]
本稿では,効果的な画像操作検出のためのコントラスト学習(PCL)を提案する。
我々のPCLは、RGBとノイズビューから2種類のグローバル特徴を抽出し、2ストリームアーキテクチャで構成されている。
我々のPCLは、実際にラベル付けされていないデータに容易に適用でき、手作業によるラベル付けコストを削減し、より一般化可能な機能を促進することができる。
論文 参考訳(メタデータ) (2022-10-16T13:30:13Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
本稿では,単一段階弱教師付きセマンティックセマンティックセマンティックセマンティクス(WSSS)と半教師付きセマンティクスセマンティクスセマンティクス(SSSS)のための自己教師付き低ランクネットワーク(SLRNet)を提案する。
SLRNetは、画像の異なるビューから複数の注意深いLR表現を同時に予測し、正確な擬似ラベルを学習する。
Pascal VOC 2012、COCO、L2IDデータセットの実験では、SLRNetは最先端のWSSSメソッドとSSSSメソッドの両方で、さまざまな設定で優れています。
論文 参考訳(メタデータ) (2022-03-19T09:19:55Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - Remote Sensing Images Semantic Segmentation with General Remote Sensing
Vision Model via a Self-Supervised Contrastive Learning Method [13.479068312825781]
リモートセマンティックセグメンテーションのためのGlobal style and Local matching Contrastive Learning Network (GLCNet)を提案する。
具体的には、画像レベルの表現をより良く学習するために、グローバルスタイルのコントラストモジュールが使用される。
コントラストモジュールにマッチするローカル特徴は、セマンティックセグメンテーションに有用なローカル領域の表現を学習するために設計されている。
論文 参考訳(メタデータ) (2021-06-20T03:03:40Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。