Diffusion-based Generative Prior for Low-Complexity MIMO Channel
Estimation
- URL: http://arxiv.org/abs/2403.03545v1
- Date: Wed, 6 Mar 2024 08:47:31 GMT
- Title: Diffusion-based Generative Prior for Low-Complexity MIMO Channel
Estimation
- Authors: Benedikt Fesl and Michael Baur and Florian Strasser and Michael Joham
and Wolfgang Utschick
- Abstract summary: This work proposes a novel channel estimator based on diffusion models (DMs)
CNN with positional embedding of the signal-to-noise ratio (SNR) information is designed by learning the channel distribution in the sparse angular domain.
Results exhibit better performance than state-of-the-art channel estimators utilizing generative priors.
- Score: 12.192048506302015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work proposes a novel channel estimator based on diffusion models (DMs),
one of the currently top-rated generative models. Contrary to related works
utilizing generative priors, a lightweight convolutional neural network (CNN)
with positional embedding of the signal-to-noise ratio (SNR) information is
designed by learning the channel distribution in the sparse angular domain.
Combined with an estimation strategy that avoids stochastic resampling and
truncates reverse diffusion steps that account for lower SNR than the given
pilot observation, the resulting DM estimator has both low complexity and
memory overhead. Numerical results exhibit better performance than
state-of-the-art channel estimators utilizing generative priors.
Related papers
- Score-Guided Intermediate Layer Optimization: Fast Langevin Mixing for
Inverse Problem [97.64313409741614]
We prove fast mixing and characterize the stationary distribution of the Langevin Algorithm for inverting random weighted DNN generators.
We propose to do posterior sampling in the latent space of a pre-trained generative model.
arXiv Detail & Related papers (2022-06-18T03:47:37Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT)
The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications.
arXiv Detail & Related papers (2022-05-22T12:16:43Z) - MIMO Channel Estimation using Score-Based Generative Models [1.6752182911522517]
We introduce a novel approach for channel estimation using deep score-based generative models.
These models are trained to estimate the gradient of the log-prior distribution, and can be used to iteratively refine estimates, given observed measurements of a signal.
arXiv Detail & Related papers (2022-04-14T17:23:58Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
In this study, we evaluate the performance of NLLS, the RNN-based method and a multilayer perceptron (MLP) on datasets rat and human brain.
We showed that the proposed RNN-based fitting approach had the advantage of highly reduced computation time over NLLS.
arXiv Detail & Related papers (2022-03-01T16:33:15Z) - Low Complexity Channel estimation with Neural Network Solutions [1.0499453838486013]
We deploy a general residual convolutional neural network to achieve channel estimation in a downlink scenario.
Compared with other deep learning methods for channel estimation, our results suggest improved mean squared error computation.
arXiv Detail & Related papers (2022-01-24T19:55:10Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - A Low-Complexity MIMO Channel Estimator with Implicit Structure of a
Convolutional Neural Network [0.0]
We propose a low-complexity convolutional neural network estimator which learns the minimum mean squared error channel estimator for single-antenna users.
We derive a high-level description of the estimator for arbitrary choices of the pilot sequence.
numerically results demonstrate performance gains compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2021-04-26T15:52:29Z) - Rapid Risk Minimization with Bayesian Models Through Deep Learning
Approximation [9.93116974480156]
We introduce a novel combination of Bayesian Models (BMs) and Neural Networks (NNs) for making predictions with a minimum expected risk.
Our approach combines the data efficiency and interpretability of a BM with the speed of a NN.
We achieve risk minimized predictions significantly faster than standard methods with a negligible loss on the testing dataset.
arXiv Detail & Related papers (2021-03-29T15:08:25Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.