Environmental Insights: Democratizing Access to Ambient Air Pollution
Data and Predictive Analytics with an Open-Source Python Package
- URL: http://arxiv.org/abs/2403.03664v1
- Date: Wed, 6 Mar 2024 12:34:50 GMT
- Title: Environmental Insights: Democratizing Access to Ambient Air Pollution
Data and Predictive Analytics with an Open-Source Python Package
- Authors: Liam J Berrisford, Ronaldo Menezes
- Abstract summary: Environmental Insights is an open-source Python package designed to democratize access to air pollution concentration data.
This tool enables users to retrieve historical air pollution data and employ a Machine Learning model for forecasting potential future conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ambient air pollution is a pervasive issue with wide-ranging effects on human
health, ecosystem vitality, and economic structures. Utilizing data on ambient
air pollution concentrations, researchers can perform comprehensive analyses to
uncover the multifaceted impacts of air pollution across society. To this end,
we introduce Environmental Insights, an open-source Python package designed to
democratize access to air pollution concentration data. This tool enables users
to easily retrieve historical air pollution data and employ a Machine Learning
model for forecasting potential future conditions. Moreover, Environmental
Insights includes a suite of tools aimed at facilitating the dissemination of
analytical findings and enhancing user engagement through dynamic
visualizations. This comprehensive approach ensures that the package caters to
the diverse needs of individuals looking to explore and understand air
pollution trends and their implications.
Related papers
- Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts [0.11249583407496218]
Air pollution poses a significant threat to public health and well-being, particularly in urban areas.
This study introduces a series of machine-learning models that integrate data from the Sentinel-5P satellite, meteorological conditions, and topological characteristics to forecast future levels of five major pollutants.
arXiv Detail & Related papers (2024-05-30T10:02:53Z) - Towards Greener Nights: Exploring AI-Driven Solutions for Light Pollution Management [1.0650780147044159]
We aim to develop predictive models capable of estimating the degree of sky glow observed in various locations and times.
Our research seeks to inform evidence-based interventions and promote responsible outdoor lighting practices.
arXiv Detail & Related papers (2024-04-15T04:41:53Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - Machine Learning for Urban Air Quality Analytics: A Survey [27.96085346957208]
Air pollution poses an urgent global concern with far-reaching consequences.
In this article, we present a comprehensive survey of Machine Learning-based air quality analytics.
arXiv Detail & Related papers (2023-10-14T17:03:29Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
Methane is one of the most potent greenhouse gases.
Current methane emission monitoring techniques rely on approximate emission factors or self-reporting.
Deep learning methods can be leveraged to automatize the detection of methane leaks in Sentinel-2 satellite multispectral data.
arXiv Detail & Related papers (2023-08-21T19:36:50Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Aim in Climate Change and City Pollution [0.0]
Air pollution plays a key role in the degradation of the environment as well as the health of the citizens exposed to it.
In this chapter we provide a review of the methods available to model air pollution, focusing on the application of machine-learning methods.
arXiv Detail & Related papers (2021-12-30T16:17:46Z) - Information is Power: Intrinsic Control via Information Capture [110.3143711650806]
We argue that a compact and general learning objective is to minimize the entropy of the agent's state visitation estimated using a latent state-space model.
This objective induces an agent to both gather information about its environment, corresponding to reducing uncertainty, and to gain control over its environment, corresponding to reducing the unpredictability of future world states.
arXiv Detail & Related papers (2021-12-07T18:50:42Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
We argue that machine learning can meet this analytic challenge to enhance our understanding, monitoring capacity, and conservation of wildlife species.
In essence, by combining new machine learning approaches with ecological domain knowledge, animal ecologists can capitalize on the abundance of data generated by modern sensor technologies.
arXiv Detail & Related papers (2021-10-25T13:40:36Z) - Deciphering Environmental Air Pollution with Large Scale City Data [0.0]
Various factors ranging from emissions from traffic and power plants, household emissions, natural causes are known to be primary causal agents or influencers behind rising air pollution levels.
We introduce a large scale city-wise dataset for exploring the relationships among these agents over a long period of time.
Also, we provide a set of benchmarks for the problem of estimating or forecasting pollutant levels with a set of diverse models and methodologies.
arXiv Detail & Related papers (2021-09-09T22:00:51Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
In recent years, companies have increasingly been aiming to both mitigate their environmental impact and adapt to the changing climate context.
This is reported via increasingly exhaustive reports, which cover many types of climate risks and exposures under the umbrella of Environmental, Social, and Governance (ESG)
We present this tool and the methodology that we used to develop it in the present article.
arXiv Detail & Related papers (2020-11-03T21:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.