Towards Greener Nights: Exploring AI-Driven Solutions for Light Pollution Management
- URL: http://arxiv.org/abs/2404.09453v1
- Date: Mon, 15 Apr 2024 04:41:53 GMT
- Title: Towards Greener Nights: Exploring AI-Driven Solutions for Light Pollution Management
- Authors: Paras Varshney, Niral Desai, Uzair Ahmed,
- Abstract summary: We aim to develop predictive models capable of estimating the degree of sky glow observed in various locations and times.
Our research seeks to inform evidence-based interventions and promote responsible outdoor lighting practices.
- Score: 1.0650780147044159
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research endeavors to address the pervasive issue of light pollution through an interdisciplinary approach, leveraging data science and machine learning techniques. By analyzing extensive datasets and research findings, we aim to develop predictive models capable of estimating the degree of sky glow observed in various locations and times. Our research seeks to inform evidence-based interventions and promote responsible outdoor lighting practices to mitigate the adverse impacts of light pollution on ecosystems, energy consumption, and human well-being.
Related papers
- Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
We introduce a novel framework, Variable-Agnostic Causal Exploration for Reinforcement Learning (VACERL)
Our approach automatically identifies crucial observation-action steps associated with key variables using attention mechanisms.
It constructs the causal graph connecting these steps, which guides the agent towards observation-action pairs with greater causal influence on task completion.
arXiv Detail & Related papers (2024-07-17T09:45:27Z) - Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts [0.11249583407496218]
Air pollution poses a significant threat to public health and well-being, particularly in urban areas.
This study introduces a series of machine-learning models that integrate data from the Sentinel-5P satellite, meteorological conditions, and topological characteristics to forecast future levels of five major pollutants.
arXiv Detail & Related papers (2024-05-30T10:02:53Z) - Environmental Insights: Democratizing Access to Ambient Air Pollution
Data and Predictive Analytics with an Open-Source Python Package [0.0]
Environmental Insights is an open-source Python package designed to democratize access to air pollution concentration data.
This tool enables users to retrieve historical air pollution data and employ a Machine Learning model for forecasting potential future conditions.
arXiv Detail & Related papers (2024-03-06T12:34:50Z) - Causally Aware Generative Adversarial Networks for Light Pollution
Control [17.823594255913594]
Excessive illumination can lead to light pollution, posing non-negligible threats to economic burdens, ecosystems, and human health.
We introduce a novel framework named Causally Aware Generative Adversarial Networks (CAGAN)
This innovative approach aims to uncover the fundamental drivers of light pollution within cities and offer intelligent solutions for optimal illumination resource allocation.
arXiv Detail & Related papers (2024-01-12T08:57:20Z) - Challenges in data-based geospatial modeling for environmental research
and practice [19.316860936437823]
Data-based geospatial modelling using machine learning (ML) has gained popularity in environmental research.
This survey reviews common nuances in geospatial modelling, such as imbalanced data, spatial autocorrelation, prediction errors, model generalisation, domain specificity, and uncertainty estimation.
arXiv Detail & Related papers (2023-11-18T12:30:49Z) - Machine Learning for Urban Air Quality Analytics: A Survey [27.96085346957208]
Air pollution poses an urgent global concern with far-reaching consequences.
In this article, we present a comprehensive survey of Machine Learning-based air quality analytics.
arXiv Detail & Related papers (2023-10-14T17:03:29Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z) - A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why? [84.46288849132634]
We propose a systematic framework for analyzing the evolution of research topics in a scientific field using causal discovery and inference techniques.
We define three variables to encompass diverse facets of the evolution of research topics within NLP.
We utilize a causal discovery algorithm to unveil the causal connections among these variables using observational data.
arXiv Detail & Related papers (2023-05-22T11:08:00Z) - Artificial intelligence to advance Earth observation: : A review of models, recent trends, and pathways forward [60.43248801101935]
This article gives a bird's eye view of the essential scientific tools and approaches informing and supporting the transition from raw EO data to usable EO-based information.
We cover the impact of (i) Computer vision; (ii) Machine learning; (iii) Advanced processing and computing; (iv) Knowledge-based AI; (v) Explainable AI and causal inference; (vi) Physics-aware models; (vii) User-centric approaches; and (viii) the much-needed discussion of ethical and societal issues related to the massive use of ML technologies in EO.
arXiv Detail & Related papers (2023-05-15T07:47:24Z) - Automatic Gaze Analysis: A Survey of DeepLearning based Approaches [61.32686939754183]
Eye gaze analysis is an important research problem in the field of computer vision and Human-Computer Interaction.
There are several open questions including what are the important cues to interpret gaze direction in an unconstrained environment.
We review the progress across a range of gaze analysis tasks and applications to shed light on these fundamental questions.
arXiv Detail & Related papers (2021-08-12T00:30:39Z) - Using satellite imagery to understand and promote sustainable
development [87.72561825617062]
We synthesize the growing literature that uses satellite imagery to understand sustainable development outcomes.
We quantify the paucity of ground data on key human-related outcomes and the growing abundance and resolution of satellite imagery.
We review recent machine learning approaches to model-building in the context of scarce and noisy training data.
arXiv Detail & Related papers (2020-09-23T05:20:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.