Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts
- URL: http://arxiv.org/abs/2405.19901v1
- Date: Thu, 30 May 2024 10:02:53 GMT
- Title: Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts
- Authors: Giacomo Blanco, Luca Barco, Lorenzo Innocenti, Claudio Rossi,
- Abstract summary: Air pollution poses a significant threat to public health and well-being, particularly in urban areas.
This study introduces a series of machine-learning models that integrate data from the Sentinel-5P satellite, meteorological conditions, and topological characteristics to forecast future levels of five major pollutants.
- Score: 0.11249583407496218
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Air pollution poses a significant threat to public health and well-being, particularly in urban areas. This study introduces a series of machine-learning models that integrate data from the Sentinel-5P satellite, meteorological conditions, and topological characteristics to forecast future levels of five major pollutants. The investigation delineates the process of data collection, detailing the combination of diverse data sources utilized in the study. Through experiments conducted in the Milan metropolitan area, the models demonstrate their efficacy in predicting pollutant levels for the forthcoming day, achieving a percentage error of around 30%. The proposed models are advantageous as they are independent of monitoring stations, facilitating their use in areas without existing infrastructure. Additionally, we have released the collected dataset to the public, aiming to stimulate further research in this field. This research contributes to advancing our understanding of urban air quality dynamics and emphasizes the importance of amalgamating satellite, meteorological, and topographical data to develop robust pollution forecasting models.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Aurora: A Foundation Model of the Atmosphere [56.97266186291677]
We introduce Aurora, a large-scale foundation model of the atmosphere trained on over a million hours of diverse weather and climate data.
In under a minute, Aurora produces 5-day global air pollution predictions and 10-day high-resolution weather forecasts.
arXiv Detail & Related papers (2024-05-20T14:45:18Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - A Framework for Scalable Ambient Air Pollution Concentration Estimation [0.0]
Ambient air pollution remains a critical issue in the United Kingdom, where data on air pollution concentrations form the foundation for interventions aimed at improving air quality.
We introduce a data-driven supervised machine learning model framework designed to address temporal and spatial data gaps by filling missing measurements.
This approach provides a comprehensive dataset for England throughout 2018 at a 1kmx1km hourly resolution.
arXiv Detail & Related papers (2024-01-16T18:03:07Z) - Unleashing Realistic Air Quality Forecasting: Introducing the
Ready-to-Use PurpleAirSF Dataset [4.190243190157989]
This paper introduces PurpleAirSF, a comprehensive and easily accessible dataset from the PurpleAir network.
We present a detailed account of the data collection and processing methods employed to build PurpleAirSF.
We conduct preliminary experiments using both classic and modern-temporal forecasting models, thereby establishing a benchmark for future air quality forecasting tasks.
arXiv Detail & Related papers (2023-06-24T12:10:16Z) - Detecting Elevated Air Pollution Levels by Monitoring Web Search
Queries: Deep Learning-Based Time Series Forecasting [7.978612711536259]
Prior work relied on modeling pollutant concentrations collected from ground-based monitors and meteorological data for long-term forecasting.
This study aims to develop and validate models to nowcast the observed pollution levels using Web search data, which is publicly available in near real-time from major search engines.
We developed novel machine learning-based models using both traditional supervised classification methods and state-of-the-art deep learning methods to detect elevated air pollution levels at the US city level.
arXiv Detail & Related papers (2022-11-09T23:56:35Z) - Deciphering Environmental Air Pollution with Large Scale City Data [0.0]
Various factors ranging from emissions from traffic and power plants, household emissions, natural causes are known to be primary causal agents or influencers behind rising air pollution levels.
We introduce a large scale city-wise dataset for exploring the relationships among these agents over a long period of time.
Also, we provide a set of benchmarks for the problem of estimating or forecasting pollutant levels with a set of diverse models and methodologies.
arXiv Detail & Related papers (2021-09-09T22:00:51Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Conditional Generative Adversarial Networks to Model Urban Outdoor Air
Pollution [0.8122270502556374]
We propose to train models able to generate synthetic nitrogen dioxide daily time series according to a given classification.
The proposed approach is able to generate accurate and diverse pollution daily time series, while requiring reduced computational time.
arXiv Detail & Related papers (2020-10-05T18:01:10Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.