論文の概要: Security Testing of RESTful APIs With Test Case Mutation
- arxiv url: http://arxiv.org/abs/2403.03701v1
- Date: Wed, 6 Mar 2024 13:31:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 14:52:18.949224
- Title: Security Testing of RESTful APIs With Test Case Mutation
- Title(参考訳): テストケースミューテーションによるRESTful APIのセキュリティテスト
- Authors: Sebastien Salva and Jarod Sue
- Abstract要約: 本稿では、開発者が個別に各サービスを試すためのテストケースを生成するための自動アプローチを提案する。
テストケース変異アルゴリズムを提案し、4つのWebサービス構成での有効性と性能を評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The focus of this paper is on automating the security testing of RESTful
APIs. The testing stage of this specific kind of components is often performed
manually, and this is yet considered as a long and difficult activity. This
paper proposes an automated approach to help developers generate test cases for
experimenting with each service in isolation. This approach is based upon the
notion of test case mutation, which automatically generates new test cases from
an original test case set. Test case mutation operators perform slight test
case modifications to mimic possible failures or to test the component under
test with new interactions. In this paper, we examine test case mutation
operators for RESTful APIs and define 17 operators specialised in security
testing. Then, we present our test case mutation algorithm. We evaluate its
effectiveness and performance on four web service compositions.
- Abstract(参考訳): 本稿では、RESTful APIのセキュリティテストを自動化することに焦点を当てる。
この種のコンポーネントのテスト段階は、しばしば手動で行われるが、これは長くて難しい活動だと考えられている。
本稿では,各サービスを独立して実験するためのテストケースを生成するための自動化手法を提案する。
このアプローチは、オリジナルのテストケースセットから新しいテストケースを自動的に生成するテストケース突然変異の概念に基づいている。
テストケース変異オペレータは、可能な障害を模倣したり、テスト中のコンポーネントを新たなインタラクションでテストするために、わずかなテストケース変更を実行します。
本稿では、restful apiのテストケース変異演算子を調べ、セキュリティテストに特化した17のオペレータを定義する。
次に,本テストケース変異アルゴリズムを提案する。
我々は、その効果と性能を4つのwebサービス構成で評価する。
関連論文リスト
- Active Test-Time Adaptation: Theoretical Analyses and An Algorithm [51.84691955495693]
テスト時間適応(TTA)は、教師なし設定でストリーミングテストデータの分散シフトに対処する。
完全TTA設定内に能動学習を統合する能動テスト時間適応(ATTA)の新たな問題設定を提案する。
論文 参考訳(メタデータ) (2024-04-07T22:31:34Z) - Observation-based unit test generation at Meta [52.4716552057909]
TestGenは、アプリケーション実行中に観察された複雑なオブジェクトのシリアライズされた観察から作られたユニットテストを自動的に生成する。
TestGenは518のテストを本番環境に投入し、継続的統合で9,617,349回実行され、5,702の障害が見つかった。
評価の結果,信頼性の高い4,361のエンドツーエンドテストから,少なくとも86%のクラスでテストを生成することができた。
論文 参考訳(メタデータ) (2024-02-09T00:34:39Z) - Automatic Generation of Test Cases based on Bug Reports: a Feasibility
Study with Large Language Models [4.318319522015101]
既存のアプローチは、単純なテスト(例えば単体テスト)や正確な仕様を必要とするテストケースを生成する。
ほとんどのテスト手順は、テストスイートを形成するために人間が書いたテストケースに依存しています。
大規模言語モデル(LLM)を活用し,バグレポートを入力として利用することにより,この生成の実現可能性を検討する。
論文 参考訳(メタデータ) (2023-10-10T05:30:12Z) - Effective Test Generation Using Pre-trained Large Language Models and
Mutation Testing [13.743062498008555]
大規模言語モデル(LLM)が生成するテストケースの有効性を,バグの発見の観点から改善するための MuTAP を導入する。
MuTAPは、プログラム・アンダー・テスト(PUT)の自然言語記述がない場合に有効なテストケースを生成することができる
提案手法は, 最大28%の人書きコードスニペットを検出できることを示す。
論文 参考訳(メタデータ) (2023-08-31T08:48:31Z) - Towards Automatic Generation of Amplified Regression Test Oracles [44.45138073080198]
回帰テストオラクルを増幅するためのテストオラクル導出手法を提案する。
このアプローチはテスト実行中にオブジェクトの状態を監視し、以前のバージョンと比較して、SUTの意図した振る舞いに関連する変更を検出する。
論文 参考訳(メタデータ) (2023-07-28T12:38:44Z) - TTAPS: Test-Time Adaption by Aligning Prototypes using Self-Supervision [70.05605071885914]
本研究では,単体テストサンプルに適用可能な自己教師付きトレーニングアルゴリズムSwaVの新たな改良を提案する。
ベンチマークデータセットCIFAR10-Cにおいて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-05-18T05:43:06Z) - Automated Support for Unit Test Generation: A Tutorial Book Chapter [21.716667622896193]
単体テストは、システムの他の部分と独立してテストできる最小のコードセグメントをテストする段階である。
単体テストは通常実行可能なコードとして書かれ、Pythonのpytestのような単体テストフレームワークが提供する形式で書かれる。
本章では,検索に基づく単体テスト生成の概念を紹介する。
論文 参考訳(メタデータ) (2021-10-26T11:13:40Z) - Detection of Coincidentally Correct Test Cases through Random Forests [1.2891210250935143]
そこで本研究では,アンサンブル学習と教師付き学習アルゴリズム,すなわちランダムフォレスト(RF)を組み合わせたハイブリッド手法を提案する。
また、偶然の正しいテストケースを、テスト状態の反転やトリミング(すなわち、計算から排除)のコスト効率良く解析する。
論文 参考訳(メタデータ) (2020-06-14T15:01:53Z) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList [66.42971817954806]
CheckList は NLP モデルをテストするためのタスクに依存しない方法論である。
CheckListには、包括的なテストのアイデアを促進する一般的な言語機能とテストタイプのマトリックスが含まれている。
ユーザスタディでは、CheckListのNLP実践者が2倍の数のテストを作成し、それのないユーザの約3倍のバグを発見しました。
論文 参考訳(メタデータ) (2020-05-08T15:48:31Z) - Dynamic Causal Effects Evaluation in A/B Testing with a Reinforcement
Learning Framework [68.96770035057716]
A/Bテスト(A/B Testing)は、新しい製品を製薬、技術、伝統産業の古い製品と比較するビジネス戦略である。
本稿では,オンライン実験においてA/Bテストを実施するための強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-05T10:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。