論文の概要: Detection of Coincidentally Correct Test Cases through Random Forests
- arxiv url: http://arxiv.org/abs/2006.08605v1
- Date: Sun, 14 Jun 2020 15:01:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 12:41:56.503743
- Title: Detection of Coincidentally Correct Test Cases through Random Forests
- Title(参考訳): ランダム林による偶然の正解試験例の検出
- Authors: Shuvalaxmi Dass and Xiaozhen Xue and Akbar Siami Namin
- Abstract要約: そこで本研究では,アンサンブル学習と教師付き学習アルゴリズム,すなわちランダムフォレスト(RF)を組み合わせたハイブリッド手法を提案する。
また、偶然の正しいテストケースを、テスト状態の反転やトリミング(すなわち、計算から排除)のコスト効率良く解析する。
- 参考スコア(独自算出の注目度): 1.2891210250935143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of coverage-based fault localization greatly depends on the
quality of test cases being executed. These test cases execute some lines of
the given program and determine whether the underlying tests are passed or
failed. In particular, some test cases may be well-behaved (i.e., passed) while
executing faulty statements. These test cases, also known as coincidentally
correct test cases, may negatively influence the performance of the
spectra-based fault localization and thus be less helpful as a tool for the
purpose of automated debugging. In other words, the involvement of these
coincidentally correct test cases may introduce noises to the fault
localization computation and thus cause in divergence of effectively localizing
the location of possible bugs in the given code. In this paper, we propose a
hybrid approach of ensemble learning combined with a supervised learning
algorithm namely, Random Forests (RF) for the purpose of correctly identifying
test cases that are mislabeled to be the passing test cases. A cost-effective
analysis of flipping the test status or trimming (i.e., eliminating from the
computation) the coincidental correct test cases is also reported.
- Abstract(参考訳): カバレッジに基づくフォールトローカライズのパフォーマンスは、実行中のテストケースの品質に大きく依存します。
これらのテストケースは、与えられたプログラムのいくつかの行を実行し、基礎となるテストがパスされたか失敗したかを決定する。
特に、いくつかのテストケースは、不正なステートメントを実行しながら、十分に振る舞い(すなわちパス)されることがある。
これらのテストケースは偶然正しいテストケースとしても知られ、スペクトルベースのフォールトローカライゼーションのパフォーマンスに悪影響を与え、自動デバッグのためのツールとしてはあまり役に立たない。
言い換えれば、これら偶然に正しいテストケースの関与は、障害の局所化計算にノイズをもたらす可能性があり、それによって、与えられたコード内の潜在的なバグの位置を効果的にローカライズする。
本稿では,テストケースと誤ラベルされたテストケースを正しく識別する目的で,アンサンブル学習と教師付き学習アルゴリズム,すなわちランダムフォレスト(RF)を組み合わせたハイブリッドアプローチを提案する。
また、偶然の正しいテストケースを、テスト状態の反転やトリミング(すなわち、計算から排除)のコスト効率良く解析する。
関連論文リスト
- MOTIF: A tool for Mutation Testing with Fuzzing [3.4742750855568763]
ミューテーションテストは、セーフティクリティカルなサイバー物理システムで動作する組み込みソフトウェアにとって望ましいプラクティスである。
MOTIFは、グレーボックスファジィツールを活用して、ミュータント内の注入された欠陥を検出するCの単体テストケースを生成することで制限を克服する。
論文 参考訳(メタデータ) (2024-06-04T15:12:01Z) - Security Testing of RESTful APIs With Test Case Mutation [0.0]
本稿では、開発者が個別に各サービスを試すためのテストケースを生成するための自動アプローチを提案する。
テストケース変異アルゴリズムを提案し、4つのWebサービス構成での有効性と性能を評価した。
論文 参考訳(メタデータ) (2024-03-06T13:31:58Z) - Automatic Generation of Test Cases based on Bug Reports: a Feasibility
Study with Large Language Models [4.318319522015101]
既存のアプローチは、単純なテスト(例えば単体テスト)や正確な仕様を必要とするテストケースを生成する。
ほとんどのテスト手順は、テストスイートを形成するために人間が書いたテストケースに依存しています。
大規模言語モデル(LLM)を活用し,バグレポートを入力として利用することにより,この生成の実現可能性を検討する。
論文 参考訳(メタデータ) (2023-10-10T05:30:12Z) - Effective Test Generation Using Pre-trained Large Language Models and
Mutation Testing [13.743062498008555]
大規模言語モデル(LLM)が生成するテストケースの有効性を,バグの発見の観点から改善するための MuTAP を導入する。
MuTAPは、プログラム・アンダー・テスト(PUT)の自然言語記述がない場合に有効なテストケースを生成することができる
提案手法は, 最大28%の人書きコードスニペットを検出できることを示す。
論文 参考訳(メタデータ) (2023-08-31T08:48:31Z) - Validation of massively-parallel adaptive testing using dynamic control
matching [0.0]
現代のビジネスはしばしば同時に多数のA/B/nテストを実行し、多くのコンテンツバリエーションを同じメッセージにパッケージ化する。
本稿では, 連続試験適応条件下での各種試験の因果効果を解消する手法を提案する。
論文 参考訳(メタデータ) (2023-05-02T11:28:12Z) - Sequential Permutation Testing of Random Forest Variable Importance
Measures [68.8204255655161]
そこで本研究では、逐次置換テストと逐次p値推定を用いて、従来の置換テストに関連する高い計算コストを削減することを提案する。
シミュレーション研究の結果、シーケンシャルテストの理論的性質が当てはまることを確認した。
本手法の数値安定性を2つの応用研究で検討した。
論文 参考訳(メタデータ) (2022-06-02T20:16:50Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z) - Cross-validation Confidence Intervals for Test Error [83.67415139421448]
この研究は、クロスバリデーションのための中心極限定理と、学習アルゴリズムの弱い安定性条件下での分散の一貫した推定器を開発する。
結果は、一般的な1対1のクロスバリデーションの選択にとって、初めてのものだ。
論文 参考訳(メタデータ) (2020-07-24T17:40:06Z) - Noisy Adaptive Group Testing using Bayesian Sequential Experimental
Design [63.48989885374238]
病気の感染頻度が低い場合、Dorfman氏は80年前に、人のテストグループは個人でテストするよりも効率が良いことを示した。
本研究の目的は,ノイズの多い環境で動作可能な新しいグループテストアルゴリズムを提案することである。
論文 参考訳(メタデータ) (2020-04-26T23:41:33Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。