Optimizing VarLiNGAM for Scalable and Efficient Time Series Causal Discovery
- URL: http://arxiv.org/abs/2409.05500v1
- Date: Mon, 9 Sep 2024 10:52:58 GMT
- Title: Optimizing VarLiNGAM for Scalable and Efficient Time Series Causal Discovery
- Authors: Ziyang Jiao, Ce Guo, Wayne Luk,
- Abstract summary: Causal discovery is designed to identify causal relationships in data.
Time series causal discovery is particularly challenging due to the need to account for temporal dependencies and potential time lag effects.
This study significantly improves the feasibility of processing large datasets.
- Score: 5.430532390358285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal discovery is designed to identify causal relationships in data, a task that has become increasingly complex due to the computational demands of traditional methods such as VarLiNGAM, which combines Vector Autoregressive Model with Linear Non-Gaussian Acyclic Model for time series data. This study is dedicated to optimising causal discovery specifically for time series data, which is common in practical applications. Time series causal discovery is particularly challenging due to the need to account for temporal dependencies and potential time lag effects. By designing a specialised dataset generator and reducing the computational complexity of the VarLiNGAM model from \( O(m^3 \cdot n) \) to \( O(m^3 + m^2 \cdot n) \), this study significantly improves the feasibility of processing large datasets. The proposed methods have been validated on advanced computational platforms and tested across simulated, real-world, and large-scale datasets, showcasing enhanced efficiency and performance. The optimised algorithm achieved 7 to 13 times speedup compared with the original algorithm and around 4.5 times speedup compared with the GPU-accelerated version on large-scale datasets with feature sizes between 200 and 400. Our methods aim to push the boundaries of current causal discovery capabilities, making them more robust, scalable, and applicable to real-world scenarios, thus facilitating breakthroughs in various fields such as healthcare and finance.
Related papers
- EffiCANet: Efficient Time Series Forecasting with Convolutional Attention [12.784289506021265]
EffiCANet is designed to enhance forecasting accuracy while maintaining computational efficiency.
EffiCANet achieves the maximum reduction of 10.02% in MAE over state-of-the-art models.
arXiv Detail & Related papers (2024-11-07T12:54:42Z) - A Distribution-Aware Flow-Matching for Generating Unstructured Data for Few-Shot Reinforcement Learning [1.0709300917082865]
We introduce a distribution-aware flow matching, designed to generate synthetic unstructured data tailored for few-shot reinforcement learning (RL) on embedded processors.
We apply feature weighting through Random Forests to prioritize critical data aspects, thereby improving the precision of the generated synthetic data.
Our method provides a stable convergence based on max Q-value while enhancing frame rate by 30% in the very beginning first timestamps.
arXiv Detail & Related papers (2024-09-21T15:50:59Z) - AcceleratedLiNGAM: Learning Causal DAGs at the speed of GPUs [57.12929098407975]
We show that by efficiently parallelizing existing causal discovery methods, we can scale them to thousands of dimensions.
Specifically, we focus on the causal ordering subprocedure in DirectLiNGAM and implement GPU kernels to accelerate it.
This allows us to apply DirectLiNGAM to causal inference on large-scale gene expression data with genetic interventions yielding competitive results.
arXiv Detail & Related papers (2024-03-06T15:06:11Z) - Decreasing the Computing Time of Bayesian Optimization using
Generalizable Memory Pruning [56.334116591082896]
We show a wrapper of memory pruning and bounded optimization capable of being used with any surrogate model and acquisition function.
Running BO on high-dimensional or massive data sets becomes intractable due to this time complexity.
All model implementations are run on the MIT Supercloud state-of-the-art computing hardware.
arXiv Detail & Related papers (2023-09-08T14:05:56Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Toeplitz Least Squares Problems, Fast Algorithms and Big Data [1.3535770763481905]
Two recent algorithms have applied randomized numerical linear algebra techniques to fitting an autoregressive model to big time-series data.
We investigate and compare the quality of these two approximation algorithms on large-scale synthetic and real-world data.
While both algorithms display comparable results for synthetic datasets, the LSAR algorithm appears to be more robust when applied to real-world time series data.
arXiv Detail & Related papers (2021-12-24T08:32:09Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
Heterogeneity and irregularity of multi-source data sets present a significant challenge to time-series analysis.
In this work, we design a novel architecture, PIETS, to model heterogeneous time-series.
We show that PIETS is able to effectively model heterogeneous temporal data and outperforms other state-of-the-art approaches in the prediction task.
arXiv Detail & Related papers (2021-09-30T20:01:19Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.