論文の概要: ECAP: Extensive Cut-and-Paste Augmentation for Unsupervised Domain
Adaptive Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2403.03854v1
- Date: Wed, 6 Mar 2024 17:06:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 14:09:48.984691
- Title: ECAP: Extensive Cut-and-Paste Augmentation for Unsupervised Domain
Adaptive Semantic Segmentation
- Title(参考訳): ECAP: Unsupervised Domain Adaptive Semantic Segmentation に対する拡張的カット・アンド・ペースト法
- Authors: Erik Brorsson, Knut {\AA}kesson, Lennart Svensson, Kristofer Bengtsson
- Abstract要約: 本稿では,データ拡張を通じて信頼性の高い擬似ラベルを活用するための広範囲なカット・アンド・ペースト戦略(ECAP)を提案する。
ECAPはトレーニングを通じて擬似ラベル付きターゲットサンプルのメモリバンクを保持し、現在のトレーニングバッチに最も自信のあるサンプルをカット&ペーストする。
我々は,最近のMIC法に基づいてECPを実装し,その性能を2つの合成-実領域適応ベンチマークで向上させる。
- 参考スコア(独自算出の注目度): 4.082799056366928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider unsupervised domain adaptation (UDA) for semantic segmentation in
which the model is trained on a labeled source dataset and adapted to an
unlabeled target dataset. Unfortunately, current self-training methods are
susceptible to misclassified pseudo-labels resulting from erroneous
predictions. Since certain classes are typically associated with less reliable
predictions in UDA, reducing the impact of such pseudo-labels without skewing
the training towards some classes is notoriously difficult. To this end, we
propose an extensive cut-and-paste strategy (ECAP) to leverage reliable
pseudo-labels through data augmentation. Specifically, ECAP maintains a memory
bank of pseudo-labeled target samples throughout training and cut-and-pastes
the most confident ones onto the current training batch. We implement ECAP on
top of the recent method MIC and boost its performance on two synthetic-to-real
domain adaptation benchmarks. Notably, MIC+ECAP reaches an unprecedented
performance of 69.1 mIoU on the Synthia->Cityscapes benchmark. Our code is
available at https://github.com/ErikBrorsson/ECAP.
- Abstract(参考訳): モデルがラベル付きソースデータセットに基づいてトレーニングされ、ラベル付きターゲットデータセットに適応するセグメンテーションのための教師なしドメイン適応(UDA)を検討する。
残念なことに、現在の自己学習手法は誤った予測の結果、誤分類された擬似ラベルに影響を受けやすい。
ある種のクラスは、UDAの信頼性の低い予測と関連付けられているため、一部のクラスにトレーニングを振り向けることなく、そのような擬似ラベルの影響を減らすことは、非常に難しい。
そこで本研究では,データ拡張による信頼度の高い擬似ラベルの活用を目的としたカット・アンド・ペースト戦略(ECAP)を提案する。
具体的には、EPPはトレーニングを通じて擬似ラベル付きターゲットサンプルのメモリバンクを保持し、現在のトレーニングバッチに最も自信のあるサンプルをカット&ペーストする。
我々は,最近のMIC法に基づいてECPを実装し,その性能を2つの合成-実領域適応ベンチマークで向上させる。
特に、MIC+ECAPはSynthia->Cityscapesベンチマークで69.1 mIoUに到達した。
私たちのコードはhttps://github.com/erikbrorsson/ecapで利用可能です。
関連論文リスト
- DaMSTF: Domain Adversarial Learning Enhanced Meta Self-Training for
Domain Adaptation [20.697905456202754]
ドメイン適応のための新しい自己学習フレームワーク、すなわちドメイン逆学習強化自己学習フレームワーク(DaMSTF)を提案する。
DaMSTFはメタラーニングによって各擬似インスタンスの重要性を推定し、ラベルノイズを同時に低減し、ハードサンプルを保存する。
DaMSTFはBERTの性能を平均4%近く改善する。
論文 参考訳(メタデータ) (2023-08-05T00:14:49Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
擬似ラベルは、弱い教師付き3Dセグメンテーションタスクに広く使われており、学習に使えるのはスパース・グラウンド・トラス・ラベルのみである。
本稿では,生成した擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭めるための新しい学習戦略を提案する。
論文 参考訳(メタデータ) (2023-05-25T08:19:31Z) - CAFS: Class Adaptive Framework for Semi-Supervised Semantic Segmentation [5.484296906525601]
半教師付きセマンティックセグメンテーションは、いくつかのラベル付きサンプルと多数のラベルなし画像を使用して、ピクセルを特定のクラスに分類するモデルを学ぶ。
半教師付きセマンティックセグメンテーション(CAFS)のためのクラス適応型セミスーパービジョンフレームワークを提案する。
CAFSはラベル付きデータセットに検証セットを構築し、各クラスの校正性能を活用する。
論文 参考訳(メタデータ) (2023-03-21T05:56:53Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Robust Target Training for Multi-Source Domain Adaptation [110.77704026569499]
両レベル最適化に基づく新しいMSDAのためのロバスト目標訓練法(BORT$2$)を提案する。
提案手法は,大規模なDomainNetデータセットを含む3つのMSDAベンチマークにおいて,アートパフォーマンスの状態を達成している。
論文 参考訳(メタデータ) (2022-10-04T15:20:01Z) - Constraining Pseudo-label in Self-training Unsupervised Domain
Adaptation with Energy-based Model [26.074500538428364]
ラベル付きソースドメインの知識をラベル付きターゲットドメインに導入するために、unsupervised domain adaptation (UDA) が開発されている。
近年、深層自己学習は、ターゲットドメインを予測する反復的なプロセスを含む、UDAにとって強力な手段となる。
我々はエネルギーベースモデルを採用し,エネルギー関数最小化の目標とする未ラベル対象試料の訓練を制約する。
論文 参考訳(メタデータ) (2022-08-26T22:50:23Z) - Cycle Self-Training for Domain Adaptation [85.14659717421533]
Cycle Self-Training (CST) は、ドメイン間の一般化に擬似ラベルを強制する、原則付き自己学習アルゴリズムである。
CSTは目標の真理を回復し、不変の機能学習とバニラ自己訓練の両方が失敗する。
実験結果から,標準的なUDAベンチマークでは,CSTは先行技術よりも大幅に改善されていることが示唆された。
論文 参考訳(メタデータ) (2021-03-05T10:04:25Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) は一般的な SSL アプローチで、この制約はありませんが、当初の処方では比較的不十分です。
PLは不整合モデルからの誤った高い信頼度予測により性能が低下していると論じる。
そこで本研究では,疑似ラベリング精度を向上させるための不確実性認識型擬似ラベル選択(ups)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-15T23:29:57Z) - Two-phase Pseudo Label Densification for Self-training based Domain
Adaptation [93.03265290594278]
TPLDと呼ばれる,新規な二相擬似ラベル高密度化フレームワークを提案する。
第1フェーズでは,スライディングウインドウ投票を用いて,画像内の内在的空間相関を利用して,自信のある予測を広める。
第2フェーズでは,信頼度に基づく容易な分類を行う。
トレーニングプロセスの容易化と騒音予測の回避を目的として,ブートストラップ機構の導入を行った。
論文 参考訳(メタデータ) (2020-12-09T02:35:25Z) - ESL: Entropy-guided Self-supervised Learning for Domain Adaptation in
Semantic Segmentation [35.03150829133562]
より正確な擬似ラベルを生成するための信頼性指標としてエントロピーを利用したエントロピー誘導型自己教師学習を提案する。
異なるUDAベンチマークでは、ESLは強いSSLベースラインを一貫して上回り、最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-15T18:10:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。