論文の概要: From One to Many: Expanding the Scope of Toxicity Mitigation in Language Models
- arxiv url: http://arxiv.org/abs/2403.03893v3
- Date: Thu, 30 May 2024 17:37:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 20:54:36.737209
- Title: From One to Many: Expanding the Scope of Toxicity Mitigation in Language Models
- Title(参考訳): 一から多へ:言語モデルにおける毒性緩和の範囲を広げる
- Authors: Luiza Pozzobon, Patrick Lewis, Sara Hooker, Beyza Ermis,
- Abstract要約: 言語モデルが多言語機能を取り入れているため、私たちの安全対策はペースを保ちます。
言語間で十分なアノテートされたデータセットがないため、私たちは翻訳データを用いて緩和手法を評価し、強化する。
これにより,翻訳品質と言語間移動が毒性軽減に及ぼす影響を検討することができる。
- 参考スコア(独自算出の注目度): 10.807067327137855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To date, toxicity mitigation in language models has almost entirely been focused on single-language settings. As language models embrace multilingual capabilities, it's crucial our safety measures keep pace. Recognizing this research gap, our approach expands the scope of conventional toxicity mitigation to address the complexities presented by multiple languages. In the absence of sufficient annotated datasets across languages, we employ translated data to evaluate and enhance our mitigation techniques. We also compare finetuning mitigation approaches against retrieval-augmented techniques under both static and continual toxicity mitigation scenarios. This allows us to examine the effects of translation quality and the cross-lingual transfer on toxicity mitigation. We also explore how model size and data quantity affect the success of these mitigation efforts. Covering nine languages, our study represents a broad array of linguistic families and levels of resource availability, ranging from high to mid-resource languages. Through comprehensive experiments, we provide insights into the complexities of multilingual toxicity mitigation, offering valuable insights and paving the way for future research in this increasingly important field. Code and data are available at https://github.com/for-ai/goodtriever.
- Abstract(参考訳): これまで、言語モデルにおける毒性の緩和は、ほぼ完全に単一言語設定に焦点が当てられていた。
言語モデルが多言語機能を取り入れているため、私たちの安全対策はペースを保ちます。
この研究ギャップを認識し,本手法は,複数の言語が提示する複雑さに対処するため,従来の毒性緩和の範囲を広げるものである。
言語間で十分なアノテートされたデータセットがないため、私たちは翻訳データを用いて緩和手法を評価し、強化する。
また,静的かつ連続的な毒性緩和シナリオにおいて,検索強化手法に対する微調整緩和手法の比較を行った。
これにより,翻訳品質と言語間移動が毒性軽減に及ぼす影響を検討することができる。
また、モデルのサイズとデータ量がこれらの緩和努力の成功にどのように影響するかについても検討する。
本研究は,9つの言語を網羅し,多種多様な言語族と資源利用のレベルを表現している。
総合的な実験を通じて、多言語毒性緩和の複雑さに関する洞察を提供し、価値ある洞察を提供し、このますます重要な分野における将来の研究の道を開く。
コードとデータはhttps://github.com/for-ai/goodtriever.comで公開されている。
関連論文リスト
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Every Language Counts: Learn and Unlearn in Multilingual LLMs [11.42788038138136]
本稿では,多言語大言語モデル(LLM)における有害情報の伝播について検討する。
フェイク情報は、どのような言語であっても、異なる言語にまたがって広がり、生成されたコンテンツの完全性と信頼性を損なう。
標準のアンラーニング技術は、典型的には英語データに焦点を当てるが、多言語文脈における有害なコンテンツの拡散を緩和するには不十分である。
論文 参考訳(メタデータ) (2024-06-19T18:01:08Z) - PolygloToxicityPrompts: Multilingual Evaluation of Neural Toxic Degeneration in Large Language Models [27.996123856250065]
既存の毒性ベンチマークは圧倒的に英語に焦点を当てている。
PTP(PolygloToxicity Prompts)は、17言語にまたがる自然発生プロンプト425Kの大規模多言語毒性評価ベンチマークである。
論文 参考訳(メタデータ) (2024-05-15T14:22:33Z) - ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot
Multilingual Information Retrieval [10.664434993386523]
現在のアプローチは、非英語言語における高品質なラベル付きデータの欠如を回避している。
本稿では,単一の高リソース言語のリッチデータから学習するモジュール型高密度検索モデルを提案する。
論文 参考訳(メタデータ) (2024-02-23T02:21:24Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
私たちは、34の言語にまたがるゼロショットの感情分析タスクに重点を置いています。
文レベルの感情データを使用しない多言語語彙を用いた事前学習は、英語の感情データセットに微調整されたモデルと比較して、ゼロショット性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-02-03T10:41:05Z) - Vicinal Risk Minimization for Few-Shot Cross-lingual Transfer in Abusive
Language Detection [19.399281609371258]
高リソースから中低リソース言語への言語間変換学習は、励みのよい結果を示している。
我々は、言語間乱用言語検出を改善するために、ドメイン適応のためのデータ拡張と継続事前学習を利用する。
論文 参考訳(メタデータ) (2023-11-03T16:51:07Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
この研究は、明らかな相違を明らかにし、マインドフルなデータ収集を通じてそれらに対処する可能性のある経路を特定することによって、方言NLPの分野を強化する基盤となる。
論文 参考訳(メタデータ) (2023-10-23T17:42:01Z) - A New Generation of Perspective API: Efficient Multilingual
Character-level Transformers [66.9176610388952]
Google JigsawのAspective APIの次期バージョンの基礎を提示する。
このアプローチの中心は、単一の多言語トークンフリーなCharformerモデルである。
静的な語彙を強制することで、さまざまな設定で柔軟性が得られます。
論文 参考訳(メタデータ) (2022-02-22T20:55:31Z) - COLD: A Benchmark for Chinese Offensive Language Detection [54.60909500459201]
COLDatasetは、37kの注釈付き文を持つ中国の攻撃的言語データセットである。
また、人気のある中国語モデルの出力攻撃性を研究するために、textscCOLDetectorを提案する。
我々の資源と分析は、中国のオンラインコミュニティを解毒し、生成言語モデルの安全性を評価することを目的としている。
論文 参考訳(メタデータ) (2022-01-16T11:47:23Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - Toxic Language Detection in Social Media for Brazilian Portuguese: New
Dataset and Multilingual Analysis [4.251937086394346]
最先端のBERTモデルでは,バイナリケースのモノリンガルデータを用いて76%のマクロF1スコアを達成できた。
より正確なモデルを作成するためには,大規模なモノリンガルデータが依然として必要であることを示す。
論文 参考訳(メタデータ) (2020-10-09T13:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。