論文の概要: Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models
- arxiv url: http://arxiv.org/abs/2406.16135v1
- Date: Sun, 23 Jun 2024 15:15:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 18:54:26.433535
- Title: Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models
- Title(参考訳): 多言語大言語モデルにおける言語横断能力と知識バリア
- Authors: Lynn Chua, Badih Ghazi, Yangsibo Huang, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer Sinha, Chulin Xie, Chiyuan Zhang,
- Abstract要約: 大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
- 参考スコア(独自算出の注目度): 62.91524967852552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora. But can these models relate corresponding concepts across languages, effectively being crosslingual? This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks. We observe that while these models show promising surface-level crosslingual abilities on machine translation and embedding space analyses, they struggle with deeper crosslingual knowledge transfer, revealing a crosslingual knowledge barrier in both general (MMLU benchmark) and domain-specific (Harry Potter quiz) contexts. We observe that simple inference-time mitigation methods offer only limited improvement. On the other hand, we propose fine-tuning of LLMs on mixed-language data, which effectively reduces these gaps, even when using out-of-domain datasets like WikiText. Our findings suggest the need for explicit optimization to unlock the full crosslingual potential of LLMs. Our code is publicly available at https://github.com/google-research/crosslingual-knowledge-barriers.
- Abstract(参考訳): 大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
これらのモデルは,機械翻訳や組込み空間解析において有望な面レベルのクロスリンガル能力を示す一方で,汎用(MMLUベンチマーク)とドメイン固有(ハリー・ポッター・クイズ)の両文脈において,クロスリンガルな知識伝達に苦慮している。
単純な推論時間緩和法は限定的な改善しか提供しない。
一方,混合言語データに対するLLMの微調整は,WikiTextのようなドメイン外データセットを用いた場合であっても,これらのギャップを効果的に軽減する。
以上の結果から,LLMの完全な言語間ポテンシャルを解放するための明示的な最適化の必要性が示唆された。
私たちのコードはhttps://github.com/google-research/crosslingual-knowledge-barriersで公開されています。
関連論文リスト
- Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation [25.850573463743352]
大規模多言語事前訓練言語モデル(mPLMs)は、言語横断タスクにおいて優れた性能を発揮する。
しかし、mPLM内では異なる言語にまたがって大きな性能格差が存在する。
我々は ALSACE を導入し,優れた言語から学んだ知識を活用して,mPLM の低性能言語を誘導する。
論文 参考訳(メタデータ) (2024-04-12T14:19:16Z) - UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
オープンソースの大規模言語モデル(LLM)は、様々な分野において大きな強みを持っている。
本研究では,オープンソースの多言語教師付き微調整データセットを構築する。
結果として得られたUltraLinkデータセットは、5つの言語にわたる約100万のサンプルで構成されている。
論文 参考訳(メタデータ) (2024-02-07T05:05:53Z) - How Vocabulary Sharing Facilitates Multilingualism in LLaMA? [19.136382859468693]
大きな言語モデル(LLM)は英語のタスクに強いパフォーマンスを示すが、他の言語には制限がある。
本研究では,語彙共有の観点からLLMの多言語的能力について検討する。
論文 参考訳(メタデータ) (2023-11-15T16:13:14Z) - How do languages influence each other? Studying cross-lingual data sharing during LM fine-tuning [14.02101305717738]
多言語大言語モデル(MLLM)は、多くの異なる言語からのデータに基づいて共同で訓練される。
言語がどの程度、どの条件下で、互いのデータに依存しているかは、まだ不明である。
MLLMは、細調整の初期段階から複数の言語からのデータに依存しており、細調整の進行に伴って、この依存度が徐々に増加することが判明した。
論文 参考訳(メタデータ) (2023-05-22T17:47:41Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
本稿では,多言語言語モデルを用いて,それらのパラメータに格納された言語間語彙の知識量を探索し,元の多言語LMと比較する。
また、この知識を付加的に微調整した多言語モデルにより公開する新しい手法も考案した。
標準ベンチマークの大幅な向上を報告します。
論文 参考訳(メタデータ) (2022-04-30T13:23:16Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。