Extreme Precipitation Nowcasting using Transformer-based Generative
Models
- URL: http://arxiv.org/abs/2403.03929v1
- Date: Wed, 6 Mar 2024 18:39:41 GMT
- Title: Extreme Precipitation Nowcasting using Transformer-based Generative
Models
- Authors: Cristian Meo, Ankush Roy, Mircea Lic\u{a}, Junzhe Yin, Zeineb Bou Che,
Yanbo Wang, Ruben Imhoff, Remko Uijlenhoet, Justin Dauwels
- Abstract summary: This paper presents an innovative approach to extreme precipitation nowcasting by employing Transformer-based generative models, namely NowcastingGPT with Extreme Value Loss (EVL) regularization.
We introduce a novel method for computing EVL without assuming fixed extreme representations, addressing the limitations of current models in capturing extreme weather events.
We present both qualitative and quantitative analyses, demonstrating the superior performance of the proposed NowcastingGPT-EVL in generating accurate precipitation forecasts.
- Score: 9.497627628556875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an innovative approach to extreme precipitation
nowcasting by employing Transformer-based generative models, namely
NowcastingGPT with Extreme Value Loss (EVL) regularization. Leveraging a
comprehensive dataset from the Royal Netherlands Meteorological Institute
(KNMI), our study focuses on predicting short-term precipitation with high
accuracy. We introduce a novel method for computing EVL without assuming fixed
extreme representations, addressing the limitations of current models in
capturing extreme weather events. We present both qualitative and quantitative
analyses, demonstrating the superior performance of the proposed
NowcastingGPT-EVL in generating accurate precipitation forecasts, especially
when dealing with extreme precipitation events. The code is available at
\url{https://github.com/Cmeo97/NowcastingGPT}.
Related papers
- PostCast: Generalizable Postprocessing for Precipitation Nowcasting via Unsupervised Blurriness Modeling [85.56969895866243]
We propose an unsupervised postprocessing method to eliminate the blurriness without the requirement of training with the pairs of blurry predictions and corresponding ground truth.
A zero-shot blur kernel estimation mechanism and an auto-scale denoise guidance strategy are introduced to adapt the unconditional correlations to any blurriness modes.
arXiv Detail & Related papers (2024-10-08T08:38:23Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - GPTCast: a weather language model for precipitation nowcasting [0.0]
GPTCast is a generative deep-learning method for ensemble nowcast of radar-based precipitation.
We employ a GPT model as a forecaster to learn precipitation dynamics using tokenized radar images.
arXiv Detail & Related papers (2024-07-02T09:25:58Z) - Precipitation Nowcasting Using Physics Informed Discriminator Generative Models [9.497627628556875]
State-of-the-art models, including PySTEPS, encounter difficulties in accurately forecasting extreme weather events because of their unpredictable distribution patterns.
We design a physics-informed neural network to perform precipitation nowcasting using the precipitation and meteorological data from the Royal Netherlands Meteorological Institute.
Our findings demonstrate that the PID-GAN model outperforms numerical and SOTA deep generative models in terms of precipitation nowcasting downstream metrics.
arXiv Detail & Related papers (2024-06-14T15:12:53Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Generative Modeling of High-resolution Global Precipitation Forecasts [2.1485350418225244]
We present improvements to the architecture and training process of a current state-of-the art deep learning precipitation model (FourCastNet) using a novel generative adversarial network (GAN)
Our improvements achieve superior performance in capturing the extreme percentiles of global precipitation, while comparable to state-of-the-art NWP models in terms of forecast skill at 1--2 day lead times.
arXiv Detail & Related papers (2022-10-22T17:21:16Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.