論文の概要: Unsupervised Contrastive Learning for Robust RF Device Fingerprinting
Under Time-Domain Shift
- arxiv url: http://arxiv.org/abs/2403.04036v1
- Date: Wed, 6 Mar 2024 20:33:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 15:52:20.790805
- Title: Unsupervised Contrastive Learning for Robust RF Device Fingerprinting
Under Time-Domain Shift
- Title(参考訳): 時間領域シフトによるロバストRFデバイスフィンガープリントの教師なしコントラスト学習
- Authors: Jun Chen, Weng-Keen Wong, Bechir Hamdaoui
- Abstract要約: RF(Radio Frequency)デバイス指紋認証は、無線デバイスの自動識別と分類の潜在的な技術として認識されている。
チャネルの状態や環境設定の変化から生じる可能性のあるドメインシフトのために、これは大きな課題に直面します。
本稿では,この領域シフト問題を緩和するために,コントラスト学習を活用する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 12.443489826220183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radio Frequency (RF) device fingerprinting has been recognized as a potential
technology for enabling automated wireless device identification and
classification. However, it faces a key challenge due to the domain shift that
could arise from variations in the channel conditions and environmental
settings, potentially degrading the accuracy of RF-based device classification
when testing and training data is collected in different domains. This paper
introduces a novel solution that leverages contrastive learning to mitigate
this domain shift problem. Contrastive learning, a state-of-the-art
self-supervised learning approach from deep learning, learns a distance metric
such that positive pairs are closer (i.e. more similar) in the learned metric
space than negative pairs. When applied to RF fingerprinting, our model treats
RF signals from the same transmission as positive pairs and those from
different transmissions as negative pairs. Through experiments on wireless and
wired RF datasets collected over several days, we demonstrate that our
contrastive learning approach captures domain-invariant features, diminishing
the effects of domain-specific variations. Our results show large and
consistent improvements in accuracy (10.8\% to 27.8\%) over baseline models,
thus underscoring the effectiveness of contrastive learning in improving device
classification under domain shift.
- Abstract(参考訳): RF(Radio Frequency)デバイス指紋認証は、無線デバイスの自動識別と分類を可能にする潜在的な技術として認識されている。
しかし、チャネル条件や環境設定の変化によって生じるドメインシフトによって、RFベースのデバイス分類の精度が低下する可能性があるため、テストやトレーニングデータを異なるドメインで収集する際の大きな課題に直面している。
本稿では,この領域シフト問題を解決するために,コントラスト学習を利用した新しい解を提案する。
ディープラーニングから最先端の自己教師付き学習アプローチであるコントラスト学習は、正のペアが負のペアよりも学習された距離空間でより近い(すなわちより類似した)距離メトリックを学ぶ。
RFフィンガープリントに適用した場合, 正の対, 負の対と異なる対のRF信号を扱う。
数日間にわたって収集された無線および有線RFデータセットの実験を通して、我々のコントラスト学習アプローチがドメイン不変の特徴を捉え、ドメイン固有変動の影響を減少させることを示した。
その結果、ベースラインモデルに対する精度(10.8\%から27.8\%)が大幅に向上し、ドメインシフトによるデバイス分類の改善におけるコントラスト学習の有効性が示された。
関連論文リスト
- On the Domain Generalizability of RF Fingerprints Through Multifractal Dimension Representation [6.05147450902935]
近年,深層学習によるRFデータ駆動型デバイス指紋認証が,セキュアなデバイス識別と認証を可能にする方法として浮上している。
従来のアプローチは、あるドメインで収集されたデータに基づいてトレーニングされたモデルが異なるドメインで収集されたデータ上でテストされた場合、そのドメイン適応の問題に一般的に影響を受けます。
本研究では,深部ニューラルネットワークに入力されるデータ表現として,マルチフラクタル解析と分散フラクタル次元軌跡(VFDT)を用いて,ドメインを一般化可能なデバイス指紋を抽出する。
論文 参考訳(メタデータ) (2024-02-15T16:07:35Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
リモートセンシング変化検出(RS-CD)は、マルチテンポラルリモートセンシング画像(MT-RSI)から関連する変化を検出することを目的とする。
既存のRS-CD法の性能は、大規模な注釈付きデータセットのトレーニングによるものである。
本稿では,これらの問題に対処可能なディープメトリック学習に基づく教師なしCD手法を提案する。
論文 参考訳(メタデータ) (2023-03-16T17:52:45Z) - Federated Radio Frequency Fingerprinting with Model Transfer and
Adaptation [26.646820912136416]
本稿では,モデル転送と適応という新しい手法を用いたRFフィンガープリントアルゴリズムを提案する。
提案アルゴリズムは、RFフィンガープリントに畳み込み層間の密接な接続を導入し、学習精度を高め、モデルの複雑さを低減する。
現状のRFフィンガープリンティングアルゴリズムと比較して,提案アルゴリズムは最大15%の性能向上で予測性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-02-22T14:55:30Z) - Uncovering the Portability Limitation of Deep Learning-Based Wireless
Device Fingerprints [10.698553177585973]
デバイス指紋認証のアプローチは、生のRF信号のみからデバイス固有の特徴を抽出するためにディープラーニングに依存している。
広く知られている問題のひとつは、トレーニングデータとテストデータがさまざまなデプロイメントドメインの下で収集される場合、これらのアプローチが優れたパフォーマンスを維持することができないことだ。
ディープラーニングベースのデバイスフィンガープリントをドメインの多様性に対してより回復力のあるものにするために、これらの課題にどう対処すればよいか、いくつかのアイデアを提示します。
論文 参考訳(メタデータ) (2022-11-14T19:03:55Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
本稿では,まず,不整合表現学習(DRL)の枠組みを提案し,入力信号を逆学習によりデバイス関連成分とデバイス関連成分に分解する。
提案フレームワークにおける暗黙的なデータ拡張は、デバイス非関連チャネル統計の過度な適合を避けるために、RFF抽出器に正規化を課す。
実験により、DR-RFFと呼ばれる提案手法は、未知の複雑な伝播環境に対する一般化可能性の観点から従来の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-04T15:46:48Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
事前学習されたLeNet-5畳み込みニューラルネットワークに基づく新しい伝達学習フレームワークを提案する。
ソースニューラルネットワークから知識を転送して、異種ターゲットデータセットを予測することで、異なる伝送ラインの長さとインピーダンスの障害を診断することができる。
論文 参考訳(メタデータ) (2022-01-20T06:36:35Z) - ChaRRNets: Channel Robust Representation Networks for RF Fingerprinting [0.0]
RFフィンガープリントのための複雑値畳み込みニューラルネットワーク(CNN)を提案する。
我々は,深層学習(dl)技術を用いた無線iotデバイスの指紋認証の問題に注目する。
論文 参考訳(メタデータ) (2021-05-08T03:03:21Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - Unsupervised Domain Adaptation for Speech Recognition via Uncertainty
Driven Self-Training [55.824641135682725]
WSJ をソースドメインとし,TED-Lium 3 とSWITCHBOARD を併用したドメイン適応実験を行った。
論文 参考訳(メタデータ) (2020-11-26T18:51:26Z) - Harvesting Ambient RF for Presence Detection Through Deep Learning [12.535149305258171]
本稿では,深層学習による人的存在検出における環境無線周波数(RF)信号の利用について検討する。
WiFi信号を例として,受信機で取得したチャネル状態情報(CSI)が伝搬環境に関する豊富な情報を含んでいることを示す。
畳み込みニューラルネットワーク(CNN)は、大きさと位相情報の両方を適切に訓練し、信頼性の高い存在検出を実現するように設計されている。
論文 参考訳(メタデータ) (2020-02-13T20:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。