論文の概要: On the Domain Generalizability of RF Fingerprints Through Multifractal Dimension Representation
- arxiv url: http://arxiv.org/abs/2402.10044v1
- Date: Thu, 15 Feb 2024 16:07:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 09:06:20.691888
- Title: On the Domain Generalizability of RF Fingerprints Through Multifractal Dimension Representation
- Title(参考訳): マルチフラクタル次元表現によるRFフィンガープリントの領域一般化可能性について
- Authors: Benjamin Johnson, Bechir Hamdaoui,
- Abstract要約: 近年,深層学習によるRFデータ駆動型デバイス指紋認証が,セキュアなデバイス識別と認証を可能にする方法として浮上している。
従来のアプローチは、あるドメインで収集されたデータに基づいてトレーニングされたモデルが異なるドメインで収集されたデータ上でテストされた場合、そのドメイン適応の問題に一般的に影響を受けます。
本研究では,深部ニューラルネットワークに入力されるデータ表現として,マルチフラクタル解析と分散フラクタル次元軌跡(VFDT)を用いて,ドメインを一般化可能なデバイス指紋を抽出する。
- 参考スコア(独自算出の注目度): 6.05147450902935
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: RF data-driven device fingerprinting through the use of deep learning has recently surfaced as a possible method for enabling secure device identification and authentication. Traditional approaches are commonly susceptible to the domain adaptation problem where a model trained on data collected under one domain performs badly when tested on data collected under a different domain. Some examples of a domain change include varying the location or environment of the device and varying the time or day of the data collection. In this work, we propose using multifractal analysis and the variance fractal dimension trajectory (VFDT) as a data representation input to the deep neural network to extract device fingerprints that are domain generalizable. We analyze the effectiveness of the proposed VFDT representation in detecting device-specific signatures from hardware-impaired IQ (in-phase and quadrature) signals, and we evaluate its robustness in real-world settings, using an experimental testbed of 30 WiFi-enabled Pycom devices. Our experimental results show that the proposed VFDT representation improves the scalability, robustness and generalizability of the deep learning models significantly compared to when using IQ data samples.
- Abstract(参考訳): 近年,深層学習によるRFデータ駆動型デバイス指紋認証が,セキュアなデバイス識別と認証を可能にする方法として浮上している。
従来のアプローチは、あるドメインで収集されたデータに基づいてトレーニングされたモデルが異なるドメインで収集されたデータ上でテストされた場合、そのドメイン適応の問題に一般的に影響を受けます。
ドメインの変更の例としては、デバイスの位置や環境を変更し、データ収集の時間や日を変更するものがある。
本研究では,深部ニューラルネットワークに入力されるデータ表現として,マルチフラクタル解析と分散フラクタル次元軌跡(VFDT)を用いて,ドメインを一般化可能なデバイス指紋を抽出する。
ハードウェア不備なIQ信号からデバイス固有のシグネチャを検出するために提案したVFDT表現の有効性を解析し,30個のWiFi対応Pycomデバイスの実験的なテストベッドを用いて実環境におけるロバスト性を評価する。
実験結果から,提案したVFDT表現は,IQデータを用いた場合と比較して,ディープラーニングモデルのスケーラビリティ,堅牢性,一般化性を著しく向上することが示された。
関連論文リスト
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Unsupervised Contrastive Learning for Robust RF Device Fingerprinting
Under Time-Domain Shift [12.443489826220183]
RF(Radio Frequency)デバイス指紋認証は、無線デバイスの自動識別と分類の潜在的な技術として認識されている。
チャネルの状態や環境設定の変化から生じる可能性のあるドメインシフトのために、これは大きな課題に直面します。
本稿では,この領域シフト問題を緩和するために,コントラスト学習を活用する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-06T20:33:55Z) - Generalizable Metric Network for Cross-domain Person Re-identification [55.71632958027289]
クロスドメイン(ドメインの一般化)シーンは、Re-IDタスクにおいて課題となる。
既存のほとんどのメソッドは、すべてのドメインのドメイン不変またはロバストな機能を学ぶことを目的としています。
本稿では,サンプルペア空間における標本類似性を調べるために,GMN(Generalizable Metric Network)を提案する。
論文 参考訳(メタデータ) (2023-06-21T03:05:25Z) - Explaining Cross-Domain Recognition with Interpretable Deep Classifier [100.63114424262234]
解釈可能なDeep(IDC)は、ターゲットサンプルの最も近いソースサンプルを、分類器が決定を下す証拠として学習する。
我々のIDCは、精度の劣化がほとんどなく、最適なリジェクションオプションの分類を効果的に調整する、より説明可能なモデルに導かれる。
論文 参考訳(メタデータ) (2022-11-15T15:58:56Z) - Uncovering the Portability Limitation of Deep Learning-Based Wireless
Device Fingerprints [10.698553177585973]
デバイス指紋認証のアプローチは、生のRF信号のみからデバイス固有の特徴を抽出するためにディープラーニングに依存している。
広く知られている問題のひとつは、トレーニングデータとテストデータがさまざまなデプロイメントドメインの下で収集される場合、これらのアプローチが優れたパフォーマンスを維持することができないことだ。
ディープラーニングベースのデバイスフィンガープリントをドメインの多様性に対してより回復力のあるものにするために、これらの課題にどう対処すればよいか、いくつかのアイデアを提示します。
論文 参考訳(メタデータ) (2022-11-14T19:03:55Z) - DI-NIDS: Domain Invariant Network Intrusion Detection System [9.481792073140204]
コンピュータビジョンなどの様々な応用において、ドメイン適応技術は成功している。
しかし、ネットワーク侵入検出の場合、最先端のドメイン適応アプローチは成功に留まっている。
本稿では,複数のネットワークドメインから対数領域適応を用いて,ドメイン不変な特徴を抽出する。
論文 参考訳(メタデータ) (2022-10-15T10:26:22Z) - WiFi Based Distance Estimation Using Supervised Machine Learning [0.0]
近年、WiFiは人やデバイスを屋内で見つけるための主要な情報源となっている。
所定のWiFi指紋間の空間距離を測定することは、信号距離関数の選択によって大きく影響を受ける。
本研究では,指紋間の地理空間距離を推定するための機械学習の利用を提案する。
論文 参考訳(メタデータ) (2022-08-15T13:48:46Z) - Domain Adversarial Graph Convolutional Network Based on RSSI and
Crowdsensing for Indoor Localization [8.406788215294483]
少数のラベル付きサイトサーベイデータと大量のラベル付きクラウドセンシングWiFi指紋を用いてトレーニングできる新しいWiDAGCNモデルを提案する。
本システムは、複数の建物を含む公共の屋内ローカライゼーションデータセットを用いて評価する。
論文 参考訳(メタデータ) (2022-04-06T08:06:27Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
現在のディープフェイク生成法では、偽画像やビデオの周波数スペクトルに識別的アーティファクトが残されている。
MD-CSDNetwork(MD-CSDNetwork)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-09-15T14:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。