Automated Multi-Task Learning for Joint Disease Prediction on Electronic Health Records
- URL: http://arxiv.org/abs/2403.04086v3
- Date: Tue, 08 Oct 2024 16:00:42 GMT
- Title: Automated Multi-Task Learning for Joint Disease Prediction on Electronic Health Records
- Authors: Suhan Cui, Prasenjit Mitra,
- Abstract summary: We propose an automated approach named AutoDP, which can search for the optimal configuration of task grouping and architectures simultaneously.
It achieves significant performance improvements over both hand-crafted and automated state-of-the-art methods, also maintains a feasible search cost at the same time.
- Score: 4.159498069487535
- License:
- Abstract: In the realm of big data and digital healthcare, Electronic Health Records (EHR) have become a rich source of information with the potential to improve patient care and medical research. In recent years, machine learning models have proliferated for analyzing EHR data to predict patients future health conditions. Among them, some studies advocate for multi-task learning (MTL) to jointly predict multiple target diseases for improving the prediction performance over single task learning. Nevertheless, current MTL frameworks for EHR data have significant limitations due to their heavy reliance on human experts to identify task groups for joint training and design model architectures. To reduce human intervention and improve the framework design, we propose an automated approach named AutoDP, which can search for the optimal configuration of task grouping and architectures simultaneously. To tackle the vast joint search space encompassing task combinations and architectures, we employ surrogate model-based optimization, enabling us to efficiently discover the optimal solution. Experimental results on real-world EHR data demonstrate the efficacy of the proposed AutoDP framework. It achieves significant performance improvements over both hand-crafted and automated state-of-the-art methods, also maintains a feasible search cost at the same time. Source code can be found via the link: \url{https://github.com/SH-Src/AutoDP}.
Related papers
- MEDS-Tab: Automated tabularization and baseline methods for MEDS datasets [2.8209943093430443]
This work is powered by complementary advances in core data standardization through the MEDS framework.
We dramatically simplify and accelerate this process of scalably featurizing irregularly sampled time-series data.
This system will greatly enhance the reliability, scalable, and ease of development of powerful ML solutions for health problems across diverse datasets and clinical settings.
arXiv Detail & Related papers (2024-10-31T20:36:37Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Automated Fusion of Multimodal Electronic Health Records for Better
Medical Predictions [48.0590120095748]
We propose a novel neural architecture search (NAS) framework named AutoFM, which can automatically search for the optimal model architectures for encoding diverse input modalities and fusion strategies.
We conduct thorough experiments on real-world multi-modal EHR data and prediction tasks, and the results demonstrate that our framework achieves significant performance improvement over existing state-of-the-art methods.
arXiv Detail & Related papers (2024-01-20T15:14:14Z) - Building Flexible, Scalable, and Machine Learning-ready Multimodal
Oncology Datasets [17.774341783844026]
This work proposes Multimodal Integration of Oncology Data System (MINDS)
MINDS is a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources.
By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability.
arXiv Detail & Related papers (2023-09-30T15:44:39Z) - GenHPF: General Healthcare Predictive Framework with Multi-task
Multi-source Learning [9.406539794019581]
General Healthcare Predictive Framework (GenHPF) is applicable to any EHR with minimal preprocessing for multiple prediction tasks.
Our framework significantly outperforms baseline models that utilize domain knowledge in multi-source learning.
arXiv Detail & Related papers (2022-07-20T12:46:26Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
Pre-training has shown success in different areas of machine learning, such as Computer Vision (CV), Natural Language Processing (NLP) and medical imaging.
In this paper, we apply unsupervised pre-training to heterogeneous, multi-modal EHR data for patient outcome prediction.
We find that our proposed graph based pre-training method helps in modeling the data at a population level.
arXiv Detail & Related papers (2022-03-23T17:59:45Z) - A Methodology for a Scalable, Collaborative, and Resource-Efficient
Platform to Facilitate Healthcare AI Research [0.0]
We present a system to accelerate data acquisition, dataset development and analysis, and AI model development.
This system can ingest 15,000 patient records per hour, where each record represents thousands of measurements, text notes, and high resolution data.
arXiv Detail & Related papers (2021-12-13T18:39:10Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.