HeteroSwitch: Characterizing and Taming System-Induced Data Heterogeneity in Federated Learning
- URL: http://arxiv.org/abs/2403.04207v2
- Date: Fri, 10 May 2024 09:02:28 GMT
- Title: HeteroSwitch: Characterizing and Taming System-Induced Data Heterogeneity in Federated Learning
- Authors: Gyudong Kim, Mehdi Ghasemi, Soroush Heidari, Seungryong Kim, Young Geun Kim, Sarma Vrudhula, Carole-Jean Wu,
- Abstract summary: Federated Learning (FL) is a practical approach to train deep learning models collaboratively across user-end devices.
In FL, participating user-end devices are highly fragmented in terms of hardware and software configurations.
We propose HeteroSwitch, which adaptively adopts generalization techniques depending on the level of bias caused by varying HW and SW configurations.
- Score: 36.00729012296371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a practical approach to train deep learning models collaboratively across user-end devices, protecting user privacy by retaining raw data on-device. In FL, participating user-end devices are highly fragmented in terms of hardware and software configurations. Such fragmentation introduces a new type of data heterogeneity in FL, namely \textit{system-induced data heterogeneity}, as each device generates distinct data depending on its hardware and software configurations. In this paper, we first characterize the impact of system-induced data heterogeneity on FL model performance. We collect a dataset using heterogeneous devices with variations across vendors and performance tiers. By using this dataset, we demonstrate that \textit{system-induced data heterogeneity} negatively impacts accuracy, and deteriorates fairness and domain generalization problems in FL. To address these challenges, we propose HeteroSwitch, which adaptively adopts generalization techniques (i.e., ISP transformation and SWAD) depending on the level of bias caused by varying HW and SW configurations. In our evaluation with a realistic FL dataset (FLAIR), HeteroSwitch reduces the variance of averaged precision by 6.3\% across device types.
Related papers
- FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated learning (FL) is a decentralized machine learning approach where independent learners process data privately.
We study the currently popular data partitioning techniques and visualize their main disadvantages.
We propose a method that leverages entropy and symmetry to construct 'the most challenging' and controllable data distributions.
arXiv Detail & Related papers (2023-10-11T18:39:08Z) - FedConv: Enhancing Convolutional Neural Networks for Handling Data
Heterogeneity in Federated Learning [34.37155882617201]
Federated learning (FL) is an emerging paradigm in machine learning, where a shared model is collaboratively learned using data from multiple devices.
We systematically investigate the impact of different architectural elements, such as activation functions and normalization layers, on the performance within heterogeneous FL.
Our findings indicate that with strategic architectural modifications, pure CNNs can achieve a level of robustness that either matches or even exceeds that of ViTs.
arXiv Detail & Related papers (2023-10-06T17:57:50Z) - Tackling the Unlimited Staleness in Federated Learning with Intertwined Data and Device Heterogeneities [4.9851737525099225]
Federated Learning (FL) is often affected by both data and device heterogeneities.
In this paper, we present a new FL framework that leverages the gradient inversion technique for such conversion.
Our approach can significantly improve the trained model accuracy by up to 20% and speed up the FL training progress by up to 35%.
arXiv Detail & Related papers (2023-09-24T03:19:40Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL) aims to train high-quality models in collaboration with distributed clients while not uploading their local data.
There is still a considerable gap between the flourishing FL research and real-world scenarios, mainly caused by the characteristics of heterogeneous devices and its scales.
We propose an efficient and scalable prototyping system for real-world cross-device FL, FS-Real.
arXiv Detail & Related papers (2023-03-23T15:37:17Z) - FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for
Resource and Data Heterogeneity [56.82825745165945]
Federated Learning (FL) enables training a global model without sharing the decentralized raw data stored on multiple devices to protect data privacy.
We propose a hierarchical synchronous FL framework, i.e., FedHiSyn, to tackle the problems of straggler effects and outdated models.
We evaluate the proposed framework based on MNIST, EMNIST, CIFAR10 and CIFAR100 datasets and diverse heterogeneous settings of devices.
arXiv Detail & Related papers (2022-06-21T17:23:06Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Characterizing Impacts of Heterogeneity in Federated Learning upon
Large-Scale Smartphone Data [23.67491703843822]
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in academia and industry.
A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices.
We conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under Heterogeneous and Heterogeneous-unaware settings.
arXiv Detail & Related papers (2020-06-12T07:49:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.