MKF-ADS: Multi-Knowledge Fusion Based Self-supervised Anomaly Detection System for Control Area Network
- URL: http://arxiv.org/abs/2403.04293v2
- Date: Fri, 15 Mar 2024 03:57:44 GMT
- Title: MKF-ADS: Multi-Knowledge Fusion Based Self-supervised Anomaly Detection System for Control Area Network
- Authors: Pengzhou Cheng, Zongru Wu, Gongshen Liu,
- Abstract summary: Control Area Network (CAN) is an essential communication protocol that interacts between Electronic Control Units (ECUs) in the vehicular network.
CAN is facing stringent security challenges due to innate security risks.
We propose a self-supervised multi-knowledge fused anomaly detection model, called MKF-ADS.
- Score: 9.305680247704542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Control Area Network (CAN) is an essential communication protocol that interacts between Electronic Control Units (ECUs) in the vehicular network. However, CAN is facing stringent security challenges due to innate security risks. Intrusion detection systems (IDSs) are a crucial safety component in remediating Vehicular Electronics and Systems vulnerabilities. However, existing IDSs fail to identify complexity attacks and have higher false alarms owing to capability bottleneck. In this paper, we propose a self-supervised multi-knowledge fused anomaly detection model, called MKF-ADS. Specifically, the method designs an integration framework, including spatial-temporal correlation with an attention mechanism (STcAM) module and patch sparse-transformer module (PatchST). The STcAM with fine-pruning uses one-dimensional convolution (Conv1D) to extract spatial features and subsequently utilizes the Bidirectional Long Short Term Memory (Bi-LSTM) to extract the temporal features, where the attention mechanism will focus on the important time steps. Meanwhile, the PatchST captures the combined contextual features from independent univariate time series. Finally, the proposed method is based on knowledge distillation to STcAM as a student model for learning intrinsic knowledge and cross the ability to mimic PatchST. We conduct extensive experiments on six simulation attack scenarios across various CAN IDs and time steps, and two real attack scenarios, which present a competitive prediction and detection performance. Compared with the baseline in the same paradigm, the error rate and FAR are 2.62\% and 2.41\% and achieve a promising F1-score of 97.3\%.
Related papers
- MDHP-Net: Detecting Injection Attacks on In-vehicle Network using Multi-Dimensional Hawkes Process and Temporal Model [44.356505647053716]
In this paper, we consider a specific type of cyberattack known as the injection attack.
These injection attacks have effect over time, gradually manipulating network traffic and disrupting the vehicle's normal functioning.
We propose an injection attack detector, MDHP-Net, which integrates optimal MDHP parameters with MDHP-LSTM blocks to enhance temporal feature extraction.
arXiv Detail & Related papers (2024-11-15T15:05:01Z) - Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors [41.94295877935867]
This paper presents a novel approach to detecting stuck values within the Accelerometer and Inertial Measurement Unit of a drone-like spacecraft.
A multi-channel Convolutional Neural Network (CNN) is used to perform multi-target classification and independently detect faults in the sensors.
An integration methodology is proposed to enable the network to effectively detect anomalies and trigger recovery actions at the system level.
arXiv Detail & Related papers (2024-10-11T09:36:38Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - STMixer: A One-Stage Sparse Action Detector [43.62159663367588]
We propose two core designs for a more flexible one-stage action detector.
First, we sparse a query-based adaptive feature sampling module, which endows the detector with the flexibility of mining a group of features from the entire video-temporal domain.
Second, we devise a decoupled feature mixing module, which dynamically attends to mixes along the spatial and temporal dimensions respectively for better feature decoding.
arXiv Detail & Related papers (2024-04-15T14:52:02Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Exploring Highly Quantised Neural Networks for Intrusion Detection in
Automotive CAN [13.581341206178525]
Machine learning-based intrusion detection models have been shown to successfully detect multiple targeted attack vectors.
In this paper, we present a case for custom-quantised literature (CQMLP) as a multi-class classification model.
We show that the 2-bit CQMLP model, when integrated as the IDS, can detect malicious attack messages with a very high accuracy of 99.9%.
arXiv Detail & Related papers (2024-01-19T21:11:02Z) - DefectHunter: A Novel LLM-Driven Boosted-Conformer-based Code Vulnerability Detection Mechanism [3.9377491512285157]
DefectHunter is an innovative model for vulnerability identification that employs the Conformer mechanism.
This mechanism fuses self-attention with convolutional networks to capture both local, position-wise features and global, content-based interactions.
arXiv Detail & Related papers (2023-09-27T00:10:29Z) - Multi-scale Spatial-temporal Interaction Network for Video Anomaly
Detection [3.113134714967787]
Video Anomaly Detection (VAD) is an essential yet challenging task in signal processing.
We propose a Multi-scale Spatial-Temporal Interaction Network (MSTI-Net) for VAD.
arXiv Detail & Related papers (2023-06-17T02:40:29Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - STC-IDS: Spatial-Temporal Correlation Feature Analyzing based Intrusion
Detection System for Intelligent Connected Vehicles [7.301018758489822]
We present a novel model for automotive intrusion detection by spatial-temporal correlation features of in-vehicle communication traffic (STC-IDS)
Specifically, the proposed model exploits an encoding-detection architecture. In the encoder part, spatial and temporal relations are encoded simultaneously.
The encoded information is then passed to the detector for generating forceful spatial-temporal attention features and enabling anomaly classification.
arXiv Detail & Related papers (2022-04-23T04:22:58Z) - Frequency-based Multi Task learning With Attention Mechanism for Fault
Detection In Power Systems [6.4332733596587115]
We introduce a novel deep learning-based approach for fault detection and test it on a real data set, namely, the Kaggle platform for a partial discharge detection task.
Our solution adopts a Long-Short Term Memory architecture with attention mechanism to extract time series features, and uses a 1D-Convolutional Neural Network structure to exploit frequency information of the signal for prediction.
arXiv Detail & Related papers (2020-09-15T02:01:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.