論文の概要: Effectiveness Assessment of Recent Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2403.04306v1
- Date: Thu, 7 Mar 2024 08:25:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 14:45:19.961821
- Title: Effectiveness Assessment of Recent Large Vision-Language Models
- Title(参考訳): 最近の大規模視覚言語モデルの有効性評価
- Authors: Yao Jiang, Xinyu Yan, Ge-Peng Ji, Keren Fu, Meijun Sun, Huan Xiong,
Deng-Ping Fan, Fahad Shahbaz Khan
- Abstract要約: 専門的・汎用的なタスクにおいて,一般的な大規模視覚言語モデル(LVLM)の能力を評価する。
視覚認識とローカライゼーションの領域における最近の3つのオープンソースLVLM(MiniGPT-v2,LLaVA-1.5,Shikra)の性能について検討する。
本研究により, これらのモデルは, 特殊タスクだけでなく, 一般タスクにおいても, 限られた習熟度を示すことが明らかとなった。
- 参考スコア(独自算出の注目度): 82.08377770649777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of large vision-language models (LVLMs) represents a noteworthy
advancement towards the pursuit of artificial general intelligence. However,
the extent of their efficacy across both specialized and general tasks warrants
further investigation. This article endeavors to evaluate the competency of
popular LVLMs in specialized and general tasks, respectively, aiming to offer a
comprehensive comprehension of these innovative methodologies. To gauge their
efficacy in specialized tasks, we tailor a comprehensive testbed comprising
three distinct scenarios: natural, healthcare, and industrial, encompassing six
challenging tasks. These tasks include salient, camouflaged, and transparent
object detection, as well as polyp and skin lesion detection, alongside
industrial anomaly detection. We examine the performance of three recent
open-source LVLMs -- MiniGPT-v2, LLaVA-1.5, and Shikra -- in the realm of
visual recognition and localization. Moreover, we conduct empirical
investigations utilizing the aforementioned models alongside GPT-4V, assessing
their multi-modal understanding capacities in general tasks such as object
counting, absurd question answering, affordance reasoning, attribute
recognition, and spatial relation reasoning. Our investigations reveal that
these models demonstrate limited proficiency not only in specialized tasks but
also in general tasks. We delve deeper into this inadequacy and suggest several
potential factors, including limited cognition in specialized tasks, object
hallucination, text-to-image interference, and decreased robustness in complex
problems. We hope this study would provide valuable insights for the future
development of LVLMs, augmenting their power in coping with both general and
specialized applications.
- Abstract(参考訳): 大規模視覚言語モデル(LVLM)の出現は、人工知能の追求に向けた注目すべき進歩を表している。
しかし、特殊任務と一般任務の両方において有効性の範囲はさらなる調査を必要とする。
本稿は,これらの革新的方法論の包括的理解を提供することを目的として,専門的タスクと一般タスクにおける一般的なlvlmの能力を評価することを目的としている。
特定タスクにおける有効性を評価するため、我々は、自然、医療、産業の3つの異なるシナリオからなる総合的なテストベッドを調整した。
これらのタスクには、サルエント、カモフラージュ、透明な物体検出、ポリープ、皮膚病変検出、産業的異常検出が含まれる。
視覚認識とローカライゼーションの領域における最近の3つのオープンソースLVLM(MiniGPT-v2,LLaVA-1.5,Shikra)の性能について検討する。
さらに,上記のモデルをgpt-4vと共に活用し,対象のカウント,不条理な質問応答,代価推論,属性認識,空間関係推論といった一般的なタスクにおけるマルチモーダル理解能力を評価する。
本研究により, これらのモデルは, 特殊タスクだけでなく, 一般タスクにおいても限られた習熟度を示すことが明らかとなった。
我々は、この欠陥を深く掘り下げ、特殊タスクにおける認知の制限、物体幻覚、テキスト・ツー・イメージの干渉、複雑な問題における堅牢性の低下など、いくつかの潜在的な要因を提案する。
本研究は,LVLMの今後の発展に有用な知見を提供し,一般用途と専門用途の両方に対処する能力を高めることを願っている。
関連論文リスト
- Intriguing Properties of Large Language and Vision Models [18.449076451976236]
大規模言語とビジョンモデル(LLVM)は、その顕著な一般化性能のために、大きな注目と開発努力を受けている。
高度な推論タスクの達成にもかかわらず、基本的な知覚関連タスクのパフォーマンスは驚くほど低いままである。
LLVMの最も一般的なファミリー(LLaVA)を10評価ベンチマークで評価することで、この問題を調査する。
論文 参考訳(メタデータ) (2024-10-07T05:07:01Z) - DetoxBench: Benchmarking Large Language Models for Multitask Fraud & Abuse Detection [15.933013428603152]
大規模言語モデル(LLM)は自然言語処理タスクにおいて顕著な能力を示した。
不正で虐待的な言語を識別・緩和する上で,LLMの性能を評価するためのベンチマークスイートを提案する。
論文 参考訳(メタデータ) (2024-09-09T21:12:03Z) - Beyond the Hype: A dispassionate look at vision-language models in medical scenario [3.4299097748670255]
LVLM(Large Vision-Language Models)は、様々なタスクにまたがる顕著な能力を示す。
医学などの専門分野における性能や信頼性は依然として十分に評価されていない。
本稿では,既存のLVLMを包括的に評価する新しいベンチマークであるRadVUQAを紹介する。
論文 参考訳(メタデータ) (2024-08-16T12:32:44Z) - LOVA3: Learning to Visual Question Answering, Asking and Assessment [61.51687164769517]
質問への回答、質問、評価は、世界を理解し、知識を得るのに不可欠な3つの人間の特性である。
現在のMLLM(Multimodal Large Language Models)は主に質問応答に焦点を当てており、質問や評価スキルの可能性を無視することが多い。
LOVA3は、"Learning tO Visual Question Answering, Asking and Assessment"と名付けられた革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-05-23T18:21:59Z) - Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models [87.47400128150032]
本稿では,多目的視覚中心機能拡張を備えた大規模マルチモーダルモデルであるLumenという新しいLMMアーキテクチャを提案する。
ルーメンはまず、きめ細かい視覚言語の概念のアライメントを促進する。
そして、共有表現を軽量なタスクデコーダに柔軟にルーティングすることで、タスク固有のデコーダを実行する。
論文 参考訳(メタデータ) (2024-03-12T04:13:45Z) - Beyond the Known: Investigating LLMs Performance on Out-of-Domain Intent
Detection [34.135738700682055]
本稿では,ChatGPTで表される大規模言語モデル(LLM)を包括的に評価する。
LLMには強力なゼロショット機能と少数ショット機能があるが、フルリソースで微調整されたモデルに比べれば依然として不利である。
論文 参考訳(メタデータ) (2024-02-27T07:02:10Z) - A Comprehensive Evaluation of GPT-4V on Knowledge-Intensive Visual Question Answering [53.70661720114377]
マルチモーダル・大型モデル(MLM)は視覚的理解の分野を著しく進歩させ、視覚的質問応答(VQA)の領域で顕著な能力を提供している
しかし、真の課題は知識集約型VQAタスクの領域にある。
1) モデルが視覚的手がかりを理解し、一般的な知識にどのように結びつくかを評価するコモンセンス知識、2) 画像から特定の知識を推論し、提示する際のモデルのスキルをテストする微粒な世界知識。
論文 参考訳(メタデータ) (2023-11-13T18:22:32Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
大規模言語モデル(LLM)は、質問応答(QA)タスクを含む生成的および知識集約的なタスクを約束している。
本稿では,広範に採用されているLCMとデータセットを用いた医療再生QAシステムにおける幻覚現象を解析する。
論文 参考訳(メタデータ) (2023-10-10T03:05:44Z) - Metacognitive Prompting Improves Understanding in Large Language Models [12.112914393948415]
メタ認知プロンプト(MP)は,人間の内省的推論プロセスにインスパイアされた戦略である。
我々は10の自然言語理解(NLU)データセットにまたがる4つの先行するLarge Language Model(LLM)の実験を行った。
MPは、一般的なNLUタスクとドメイン固有のNLUタスクの両方において、既存のプロンプトメソッドを一貫して上回っている。
論文 参考訳(メタデータ) (2023-08-10T05:10:17Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
本稿では,知的エージェントの4つの特徴について述べる。
実世界の物体との活発な関わりは、概念的表現を形成するためのより堅牢な信号をもたらすと我々は主張する。
我々は、人工知能分野における将来的な研究の方向性を概説して結論付ける。
論文 参考訳(メタデータ) (2023-07-07T13:58:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。