論文の概要: Memetic Differential Evolution Methods for Semi-Supervised Clustering
- arxiv url: http://arxiv.org/abs/2403.04322v1
- Date: Thu, 7 Mar 2024 08:37:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 14:32:45.475143
- Title: Memetic Differential Evolution Methods for Semi-Supervised Clustering
- Title(参考訳): 半教師付きクラスタリングのためのmemetic differential evolution法
- Authors: Pierluigi Mansueto, Fabio Schoen
- Abstract要約: 我々は、背景知識がインスタンスレベルの制約の形で与えられる半教師付き最小値クラスタリング(MSSC)問題に対処する。
本稿では,非教師付きクラスタリング文献で最近提案された最先端のフレームワークを直接拡張する,微分進化パラダイムに基づく新しいメメティクス戦略を提案する。
- 参考スコア(独自算出の注目度): 1.0256438517258686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we deal with semi-supervised Minimum Sum-of-Squares Clustering
(MSSC) problems where background knowledge is given in the form of
instance-level constraints. In particular, we take into account "must-link" and
"cannot-link" constraints, each of which indicates if two dataset points should
be associated to the same or to a different cluster. The presence of such
constraints makes the problem at least as hard as its unsupervised version: it
is no more true that each point is associated to its nearest cluster center,
thus requiring some modifications in crucial operations, such as the assignment
step. In this scenario, we propose a novel memetic strategy based on the
Differential Evolution paradigm, directly extending a state-of-the-art
framework recently proposed in the unsupervised clustering literature. As far
as we know, our contribution represents the first attempt to define a memetic
methodology designed to generate a (hopefully) optimal feasible solution for
the semi-supervised MSSC problem. The proposal is compared with some
state-of-the-art algorithms from the literature on a set of well-known
datasets, highlighting its effectiveness and efficiency in finding good quality
clustering solutions.
- Abstract(参考訳): 本稿では、背景知識がインスタンスレベルの制約の形で与えられる半教師付き最小値クラスタリング(MSSC)問題に対処する。
特に、"must-link"と"cannot-link"の制約を考慮して、それぞれが2つのデータセットポイントが同じあるいは別のクラスタに関連付けられるべきかどうかを示します。
このような制約の存在は、少なくとも教師なしバージョンと同様に問題を難しくする: 各点が最寄りのクラスタ中心に関連付けられていることはもはや事実ではなく、割り当てステップのような重要な操作にいくつかの修正を必要とする。
このシナリオでは,非教師付きクラスタリング文献で最近提案された最先端のフレームワークを直接拡張する,微分進化パラダイムに基づく新しいメメティクス戦略を提案する。
我々が知る限り、我々の貢献は、半教師付きMSSC問題に対する(好ましくは)最適実現可能なソリューションを生成するために設計されたメメティック方法論を定義する最初の試みである。
この提案は、よく知られているデータセットの集合に関する文献の最先端アルゴリズムと比較され、優れたクラスタリングソリューションを見つける上での有効性と効率性を強調している。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Semi-Supervised Clustering via Structural Entropy with Different
Constraints [30.215985625884922]
本稿では,多種多様な制約を組み込んで,分割と階層クラスタリングを両立させる手法であるStructure Entropy (SSE) による半教師付きクラスタリングを提案する。
9つのクラスタリングデータセット上でSSEを評価し,それを11の半教師付きパーティショニングおよび階層クラスタリング手法と比較した。
論文 参考訳(メタデータ) (2023-12-18T04:00:40Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
本稿では, クラスタ間マッチングによるモダリティギャップを低減するための, クラスタマッチングに基づく新たな学習フレームワークを提案する。
このような監視信号の下では、クラスタレベルで特徴を協調的に整列させるために、モダリティ・特定・モダリティ・非依存(MSMA)コントラスト学習フレームワークが提案されている。
公開SYSU-MM01とRegDBデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-22T03:27:46Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Neural Capacitated Clustering [6.155158115218501]
本稿では,クラスタセンターへのポイントの割り当て確率を予測するニューラルネットワークを学習する,容量クラスタリング問題(CCP)の新しい手法を提案する。
人工データと2つの実世界のデータセットに関する実験では、我々のアプローチは文学の最先端の数学的および解法よりも優れています。
論文 参考訳(メタデータ) (2023-02-10T09:33:44Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering [0.5801044612920815]
半教師付きMSSCのための分岐結合アルゴリズムを提案する。
背景知識はペアワイズ・マスタリンクと結びつかない制約として組み込まれている。
提案したグローバル最適化アルゴリズムは,実世界のインスタンスを最大800個のデータポイントまで効率的に解決する。
論文 参考訳(メタデータ) (2021-11-30T17:08:53Z) - Deep Conditional Gaussian Mixture Model for Constrained Clustering [7.070883800886882]
制約付きクラスタリングは、部分的にラベル付けされたデータの増加量に関する事前情報を利用することができる。
本稿では、直感的で解釈可能で、勾配変動推論の枠組みで効率的に訓練できる制約付きクラスタリングのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-11T13:38:09Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Fairness, Semi-Supervised Learning, and More: A General Framework for
Clustering with Stochastic Pairwise Constraints [32.19047459493177]
我々は,いくつかの本質的クラスタリングの目的に組み込んだ,新しいemphstochastic pairwise制約系を導入する。
これらの制約は,半教師付き学習における emphinvidual fairness や emphmust-link 制約など,興味をそそるアプリケーションの集合を簡潔にモデル化できることを示す。
論文 参考訳(メタデータ) (2021-03-02T20:27:58Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。