A mechanism-driven reinforcement learning framework for shape optimization of airfoils
- URL: http://arxiv.org/abs/2403.04329v2
- Date: Mon, 27 May 2024 02:21:28 GMT
- Title: A mechanism-driven reinforcement learning framework for shape optimization of airfoils
- Authors: Jingfeng Wang, Guanghui Hu,
- Abstract summary: A novel mechanism-driven reinforcement learning framework is proposed for airfoil shape optimization.
An efficient solver for steady equations is employed in the reinforcement learning method.
A neural network architecture is designed based on an attention mechanism to make the learning process more sensitive to the minor change of the airfoil geometry.
- Score: 0.32885740436059047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, a novel mechanism-driven reinforcement learning framework is proposed for airfoil shape optimization. To validate the framework, a reward function is designed and analyzed, from which the equivalence between the maximizing the cumulative reward and achieving the optimization objectives is guaranteed theoretically. To establish a quality exploration, and to obtain an accurate reward from the environment, an efficient solver for steady Euler equations is employed in the reinforcement learning method. The solver utilizes the B\'ezier curve to describe the shape of the airfoil, and a Newton-geometric multigrid method for the solution. In particular, a dual-weighted residual-based h-adaptive method is used for efficient calculation of target functional. To effectively streamline the airfoil shape during the deformation process, we introduce the Laplacian smoothing, and propose a B\'ezier fitting strategy, which not only remits mesh tangling but also guarantees a precise manipulation of the geometry. In addition, a neural network architecture is designed based on an attention mechanism to make the learning process more sensitive to the minor change of the airfoil geometry. Numerical experiments demonstrate that our framework can handle the optimization problem with hundreds of design variables. It is worth mentioning that, prior to this work, there are limited works combining such high-fidelity partial differential equatons framework with advanced reinforcement learning algorithms for design problems with such high dimensionality.
Related papers
- Learning to optimize with convergence guarantees using nonlinear system theory [0.4143603294943439]
We propose an unconstrained parametrization of algorithms for smooth objective functions.
Notably, our framework is directly compatible with automatic differentiation tools.
arXiv Detail & Related papers (2024-03-14T13:40:26Z) - Boosting Fairness and Robustness in Over-the-Air Federated Learning [3.2088888904556123]
Over-the-Air Computation is a beyond-5G communication strategy.
We propose an Over-the-Air federated learning algorithm that aims to provide fairness and robustness through minmax optimization.
arXiv Detail & Related papers (2024-03-07T12:03:04Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Unsupervised Learning for Combinatorial Optimization with Principled
Objective Relaxation [19.582494782591386]
This work proposes an unsupervised learning framework for optimization (CO) problems.
Our key contribution is the observation that if the relaxed objective satisfies entry-wise concavity, a low optimization loss guarantees the quality of the final integral solutions.
In particular, this observation can guide the design of objective models in applications where the objectives are not given explicitly while requiring being modeled in prior.
arXiv Detail & Related papers (2022-07-13T06:44:17Z) - Efficient Differentiable Simulation of Articulated Bodies [89.64118042429287]
We present a method for efficient differentiable simulation of articulated bodies.
This enables integration of articulated body dynamics into deep learning frameworks.
We show that reinforcement learning with articulated systems can be accelerated using gradients provided by our method.
arXiv Detail & Related papers (2021-09-16T04:48:13Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
It is desired to design a universal framework for adaptive algorithms to solve general problems.
In particular, our novel framework provides adaptive methods under non convergence support for setting.
arXiv Detail & Related papers (2021-06-15T15:16:28Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Enhanced data efficiency using deep neural networks and Gaussian
processes for aerodynamic design optimization [0.0]
Adjoint-based optimization methods are attractive for aerodynamic shape design.
They can become prohibitively expensive when multiple optimization problems are being solved.
We propose a machine learning enabled, surrogate-based framework that replaces the expensive adjoint solver.
arXiv Detail & Related papers (2020-08-15T15:09:21Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.