Learning Speed Adaptation for Flight in Clutter
- URL: http://arxiv.org/abs/2403.04586v2
- Date: Wed, 10 Jul 2024 11:57:01 GMT
- Title: Learning Speed Adaptation for Flight in Clutter
- Authors: Guangyu Zhao, Tianyue Wu, Yeke Chen, Fei Gao,
- Abstract summary: Animals learn to adapt speed of their movements to their capabilities and the environment they observe.
Mobile robots should also demonstrate this ability to trade-off aggressiveness and safety for efficiently accomplishing tasks.
This work is to endow flight vehicles with the ability of speed adaptation in prior unknown and partially observable cluttered environments.
- Score: 3.8876619768726157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Animals learn to adapt speed of their movements to their capabilities and the environment they observe. Mobile robots should also demonstrate this ability to trade-off aggressiveness and safety for efficiently accomplishing tasks. The aim of this work is to endow flight vehicles with the ability of speed adaptation in prior unknown and partially observable cluttered environments. We propose a hierarchical learning and planning framework where we utilize both well-established methods of model-based trajectory generation and trial-and-error that comprehensively learns a policy to dynamically configure the speed constraint. Technically, we use online reinforcement learning to obtain the deployable policy. The statistical results in simulation demonstrate the advantages of our method over the constant speed constraint baselines and an alternative method in terms of flight efficiency and safety. In particular, the policy behaves perception awareness, which distinguish it from alternative approaches. By deploying the policy to hardware, we verify that these advantages can be brought to the real world.
Related papers
- RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
We propose a reinforcement learning framework that combines risk-sensitive control with an adaptive action space curriculum.
We show that our algorithm is capable of learning high-speed policies for a real-world off-road driving task.
arXiv Detail & Related papers (2024-05-07T23:32:36Z) - Safe multi-agent motion planning under uncertainty for drones using
filtered reinforcement learning [6.783774261623415]
We present a tractable motion planner that builds upon the strengths of reinforcement learning and constrained-control-based trajectory planning.
The proposed approach yields a safe, real-time implementable, multi-agent motion planner that is simpler to train than methods based solely on learning.
arXiv Detail & Related papers (2023-10-31T18:09:26Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
We propose a framework for training complex robotic skills by transferring experience from existing controllers to jumpstart learning new tasks.
We show that our method enables learning complex agile jumping behaviors, navigating to goal locations while walking on hind legs, and adapting to new environments.
arXiv Detail & Related papers (2023-04-19T17:37:54Z) - Learning Perception-Aware Agile Flight in Cluttered Environments [38.59659342532348]
We propose a method to learn neural network policies that achieve perception-aware, minimum-time flight in cluttered environments.
Our approach tightly couples perception and control, showing a significant advantage in computation speed (10x faster) and success rate.
We demonstrate the closed-loop control performance using a physical quadrotor and hardware-in-the-loop simulation at speeds up to 50km/h.
arXiv Detail & Related papers (2022-10-04T18:18:58Z) - Automatically Learning Fallback Strategies with Model-Free Reinforcement
Learning in Safety-Critical Driving Scenarios [9.761912672523977]
We present a principled approach for a model-free Reinforcement Learning (RL) agent to capture multiple modes of behaviour in an environment.
We introduce an extra pseudo-reward term to the reward model, to encourage exploration to areas of state-space different from areas privileged by the optimal policy.
We show that we are able to learn useful policies that would have otherwise been missed out on during training, and unavailable to use when executing the control algorithm.
arXiv Detail & Related papers (2022-04-11T15:34:49Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
We present a novel sensor-based learning navigation algorithm to compute a collision-free trajectory for a robot in dense and dynamic environments.
Our approach uses deep reinforcement learning-based expert policy that is trained using a sim2real paradigm.
We highlight the benefits of our algorithm in simulated environments and navigating a Clearpath Jackal robot among moving pedestrians.
arXiv Detail & Related papers (2021-04-22T01:33:10Z) - Affordance-based Reinforcement Learning for Urban Driving [3.507764811554557]
We propose a deep reinforcement learning framework to learn optimal control policy using waypoints and low-dimensional visual representations.
We demonstrate that our agents when trained from scratch learn the tasks of lane-following, driving around inter-sections as well as stopping in front of other actors or traffic lights even in the dense traffic setting.
arXiv Detail & Related papers (2021-01-15T05:21:25Z) - Model-Based Meta-Reinforcement Learning for Flight with Suspended
Payloads [69.21503033239985]
Transporting suspended payloads is challenging for autonomous aerial vehicles.
We propose a meta-learning approach that "learns how to learn" models of altered dynamics within seconds of post-connection flight data.
arXiv Detail & Related papers (2020-04-23T17:43:56Z) - Efficiency and Equity are Both Essential: A Generalized Traffic Signal
Controller with Deep Reinforcement Learning [25.21831641893209]
We present an approach to learning policies for signal controllers using deep reinforcement learning aiming for optimized traffic flow.
Our method uses a novel formulation of the reward function that simultaneously considers efficiency and equity.
The experimental evaluations on both simulated and real-world data demonstrate that our proposed algorithm achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-03-09T11:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.