RAPID: Robust and Agile Planner Using Inverse Reinforcement Learning for Vision-Based Drone Navigation
- URL: http://arxiv.org/abs/2502.02054v1
- Date: Tue, 04 Feb 2025 06:42:08 GMT
- Title: RAPID: Robust and Agile Planner Using Inverse Reinforcement Learning for Vision-Based Drone Navigation
- Authors: Minwoo Kim, Geunsik Bae, Jinwoo Lee, Woojae Shin, Changseung Kim, Myong-Yol Choi, Heejung Shin, Hyondong Oh,
- Abstract summary: This paper introduces a learning-based visual planner for agile drone flight in cluttered environments.
The proposed planner generates collision-free waypoints in milliseconds, enabling drones to perform agile maneuvers in complex environments without building separate perception, mapping, and planning modules.
- Score: 9.25068777307471
- License:
- Abstract: This paper introduces a learning-based visual planner for agile drone flight in cluttered environments. The proposed planner generates collision-free waypoints in milliseconds, enabling drones to perform agile maneuvers in complex environments without building separate perception, mapping, and planning modules. Learning-based methods, such as behavior cloning (BC) and reinforcement learning (RL), demonstrate promising performance in visual navigation but still face inherent limitations. BC is susceptible to compounding errors due to limited expert imitation, while RL struggles with reward function design and sample inefficiency. To address these limitations, this paper proposes an inverse reinforcement learning (IRL)-based framework for high-speed visual navigation. By leveraging IRL, it is possible to reduce the number of interactions with simulation environments and improve capability to deal with high-dimensional spaces while preserving the robustness of RL policies. A motion primitive-based path planning algorithm collects an expert dataset with privileged map data from diverse environments, ensuring comprehensive scenario coverage. By leveraging both the acquired expert and learner dataset gathered from the agent's interactions with the simulation environments, a robust reward function and policy are learned across diverse states. While the proposed method is trained in a simulation environment only, it can be directly applied to real-world scenarios without additional training or tuning. The performance of the proposed method is validated in both simulation and real-world environments, including forests and various structures. The trained policy achieves an average speed of 7 m/s and a maximum speed of 8.8 m/s in real flight experiments. To the best of our knowledge, this is the first work to successfully apply an IRL framework for high-speed visual navigation of drones.
Related papers
- A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Tracking aims to autonomously follow a target object by controlling the motion system based on visual observations.
We propose a unified cross-scene cross-domain benchmark for open-world drone active tracking called DAT.
We also propose a reinforcement learning-based drone tracking method called R-VAT.
arXiv Detail & Related papers (2024-12-01T09:37:46Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
We introduce PLANRL, a framework that chooses when the robot should use classical motion planning and when it should learn a policy.
PLANRL switches between two modes of operation: reaching a waypoint using classical techniques when away from the objects and fine-grained manipulation control when about to interact with objects.
We evaluate our approach across multiple challenging simulation environments and real-world tasks, demonstrating superior performance in terms of adaptability, efficiency, and generalization compared to existing methods.
arXiv Detail & Related papers (2024-08-07T19:30:08Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Learning Speed Adaptation for Flight in Clutter [3.8876619768726157]
Animals learn to adapt speed of their movements to their capabilities and the environment they observe.
Mobile robots should also demonstrate this ability to trade-off aggressiveness and safety for efficiently accomplishing tasks.
This work is to endow flight vehicles with the ability of speed adaptation in prior unknown and partially observable cluttered environments.
arXiv Detail & Related papers (2024-03-07T15:30:54Z) - ReProHRL: Towards Multi-Goal Navigation in the Real World using
Hierarchical Agents [1.3194749469702445]
We present Ready for Production Hierarchical RL (ReProHRL) that divides tasks with hierarchical multi-goal navigation guided by reinforcement learning.
We also use object detectors as a pre-processing step to learn multi-goal navigation and transfer it to the real world.
For the real-world implementation and proof of concept demonstration, we deploy the proposed method on a nano-drone named Crazyflie with a front camera.
arXiv Detail & Related papers (2023-08-17T02:23:59Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
We propose a new method, called PiZero, that gives an agent the ability to plan in an abstract search space that the agent learns during training.
We evaluate our method on multiple domains, including the traveling salesman problem, Sokoban, 2048, the facility location problem, and Pacman.
arXiv Detail & Related papers (2023-08-16T22:47:16Z) - Learning Perception-Aware Agile Flight in Cluttered Environments [38.59659342532348]
We propose a method to learn neural network policies that achieve perception-aware, minimum-time flight in cluttered environments.
Our approach tightly couples perception and control, showing a significant advantage in computation speed (10x faster) and success rate.
We demonstrate the closed-loop control performance using a physical quadrotor and hardware-in-the-loop simulation at speeds up to 50km/h.
arXiv Detail & Related papers (2022-10-04T18:18:58Z) - Learning High-Speed Flight in the Wild [101.33104268902208]
We propose an end-to-end approach that can autonomously fly quadrotors through complex natural and man-made environments at high speeds.
The key principle is to directly map noisy sensory observations to collision-free trajectories in a receding-horizon fashion.
By simulating realistic sensor noise, our approach achieves zero-shot transfer from simulation to challenging real-world environments.
arXiv Detail & Related papers (2021-10-11T09:43:11Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Motion Planner Augmented Reinforcement Learning for Robot Manipulation
in Obstructed Environments [22.20810568845499]
We propose motion planner augmented RL (MoPA-RL) which augments the action space of an RL agent with the long-horizon planning capabilities of motion planners.
Based on the magnitude of the action, our approach smoothly transitions between directly executing the action and invoking a motion planner.
Experiments demonstrate that MoPA-RL increases learning efficiency, leads to a faster exploration, and results in safer policies.
arXiv Detail & Related papers (2020-10-22T17:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.