論文の概要: Contrastive Continual Learning with Importance Sampling and
Prototype-Instance Relation Distillation
- arxiv url: http://arxiv.org/abs/2403.04599v1
- Date: Thu, 7 Mar 2024 15:47:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 13:35:43.729558
- Title: Contrastive Continual Learning with Importance Sampling and
Prototype-Instance Relation Distillation
- Title(参考訳): 重要サンプリングとプロトタイプ・インスタンス関係蒸留を用いたコントラスト連続学習
- Authors: Jiyong Li, Dilshod Azizov, Yang Li, Shangsong Liang
- Abstract要約: 本稿では,従来のデータ分布を復元し,知識の保存を目的としたコントラスト連続学習(Contrastive Continual Learning via Importance Smpling, CCLIS)を提案する。
また,プロトタイプとサンプル表現の関係を維持する技術であるPRD(Prototype-instance Relation Distillation)の損失について述べる。
- 参考スコア(独自算出の注目度): 14.25441464051506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, because of the high-quality representations of contrastive learning
methods, rehearsal-based contrastive continual learning has been proposed to
explore how to continually learn transferable representation embeddings to
avoid the catastrophic forgetting issue in traditional continual settings.
Based on this framework, we propose Contrastive Continual Learning via
Importance Sampling (CCLIS) to preserve knowledge by recovering previous data
distributions with a new strategy for Replay Buffer Selection (RBS), which
minimize estimated variance to save hard negative samples for representation
learning with high quality. Furthermore, we present the Prototype-instance
Relation Distillation (PRD) loss, a technique designed to maintain the
relationship between prototypes and sample representations using a
self-distillation process. Experiments on standard continual learning
benchmarks reveal that our method notably outperforms existing baselines in
terms of knowledge preservation and thereby effectively counteracts
catastrophic forgetting in online contexts. The code is available at
https://github.com/lijy373/CCLIS.
- Abstract(参考訳): 近年,コントラスト学習手法の質の高い表現のために,伝統的なコントラスト学習における破滅的な忘れ方を避けるために,トランスファー可能な表現埋め込みを継続的に学習する方法を探究するために,リハーサルベースのコントラスト連続学習が提案されている。
この枠組みに基づいて,従来のデータ分布を復元して知識を保存するためのコントラスト型連続学習(Contrastive Continual Learning via Importance Smpling, CCLIS)を提案する。
さらに, 自己蒸留法を用いて, プロトタイプと試料表現の関係を維持するための手法であるprototype-instance relation distillation (prd) lossを提案する。
標準連続学習ベンチマーク実験により,本手法が既存のベースラインよりも知識保存の面で優れていることが明らかとなった。
コードはhttps://github.com/lijy373/cclisで入手できる。
関連論文リスト
- Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning [42.14439854721613]
本稿では,クラス増分学習シナリオに特化して,ベイズ学習駆動型コントラスト損失(BLCL)を持つプロトタイプネットワークを提案する。
提案手法は,ベイズ学習手法を用いて,クロスエントロピーとコントラスト損失関数のバランスを動的に適用する。
論文 参考訳(メタデータ) (2024-05-17T19:49:02Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Continual Contrastive Spoken Language Understanding [33.09005399967931]
COCONUTは、経験リプレイとコントラスト学習の組み合わせに依存するクラスインクリメンタルラーニング(CIL)手法である。
我々は,COCONUTをデコーダ側で動作するメソッドと組み合わせることで,さらなるメトリクス改善を実現することを示す。
論文 参考訳(メタデータ) (2023-10-04T10:09:12Z) - Continual Learning with Strong Experience Replay [32.154995019080594]
SER(Strong Experience Replay)を用いたCL法を提案する。
SERは、メモリバッファから過去の経験を蒸留する以外に、現在のトレーニングデータに模倣された将来の経験を利用する。
複数の画像分類データセットによる実験結果から,SER法が最先端の手法をはるかに上回ることがわかった。
論文 参考訳(メタデータ) (2023-05-23T02:42:54Z) - Mitigating Catastrophic Forgetting in Task-Incremental Continual
Learning with Adaptive Classification Criterion [50.03041373044267]
本稿では,継続的学習のための適応型分類基準を用いた教師付きコントラスト学習フレームワークを提案する。
実験により, CFLは最先端の性能を達成し, 分類基準に比べて克服する能力が強いことが示された。
論文 参考訳(メタデータ) (2023-05-20T19:22:40Z) - Consistent Representation Learning for Continual Relation Extraction [18.694012937149495]
関係埋め込みの安定性を維持する一貫した表現学習法を提案する。
我々の手法は最先端のベースラインを著しく上回り、不均衡なデータセットに強い堅牢性をもたらす。
論文 参考訳(メタデータ) (2022-03-05T12:16:34Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
画像とテキストを共同で表現するマルチモーダル表現学習手法が提案されている。
これらの手法は,大規模マルチモーダル事前学習から高レベルな意味情報を取得することにより,優れた性能を実現する。
そこで本稿では,非バイアスのDense Contrastive Visual-Linguistic Pretrainingを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:20:13Z) - Co$^2$L: Contrastive Continual Learning [69.46643497220586]
近年の自己教師型学習のブレークスルーは、このようなアルゴリズムが視覚的な表現を学習し、見えないタスクにもっとうまく移行できることを示している。
本稿では、連続的な学習と伝達可能な表現の維持に焦点を当てたリハーサルに基づく連続学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-28T06:14:38Z) - Semi-Discriminative Representation Loss for Online Continual Learning [16.414031859647874]
勾配に基づくアプローチは、コンパクトなエピソードメモリをより効率的に活用するために開発されている。
本稿では,SDRL(Semi-Discriminative Representation Loss)という,連続学習のための簡易な手法を提案する。
論文 参考訳(メタデータ) (2020-06-19T17:13:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。