論文の概要: Temporal-Difference Variational Continual Learning
- arxiv url: http://arxiv.org/abs/2410.07812v2
- Date: Wed, 14 May 2025 18:18:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.02029
- Title: Temporal-Difference Variational Continual Learning
- Title(参考訳): 時間差変動連続学習
- Authors: Luckeciano C. Melo, Alessandro Abate, Yarin Gal,
- Abstract要約: 複数の先行推定の正則化効果を統合する新たな学習目標を提案する。
提案手法は, 変分CL法より優れたカタストロフィックフォーミングを効果的に緩和する。
- 参考スコア(独自算出の注目度): 89.32940051152782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning models in real-world applications must continuously learn new tasks to adapt to shifts in the data-generating distribution. Yet, for Continual Learning (CL), models often struggle to balance learning new tasks (plasticity) with retaining previous knowledge (memory stability). Consequently, they are susceptible to Catastrophic Forgetting, which degrades performance and undermines the reliability of deployed systems. In the Bayesian CL literature, variational methods tackle this challenge by employing a learning objective that recursively updates the posterior distribution while constraining it to stay close to its previous estimate. Nonetheless, we argue that these methods may be ineffective due to compounding approximation errors over successive recursions. To mitigate this, we propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations, preventing individual errors from dominating future posterior updates and compounding over time. We reveal insightful connections between these objectives and Temporal-Difference methods, a popular learning mechanism in Reinforcement Learning and Neuroscience. Experiments on challenging CL benchmarks show that our approach effectively mitigates Catastrophic Forgetting, outperforming strong Variational CL methods.
- Abstract(参考訳): 実世界のアプリケーションにおける機械学習モデルは、データ生成ディストリビューションのシフトに適応するために、新しいタスクを継続的に学習する必要があります。
しかし、継続学習(CL)では、モデルは以前の知識(メモリの安定性)を維持しながら新しいタスク(塑性)の学習のバランスをとるのに苦労することが多い。
結果として、それらは、パフォーマンスを低下させ、デプロイされたシステムの信頼性を損なうカタストロフィック・フォージッティング(Caastrophic Forgetting)の影響を受けやすい。
ベイズ CL の文献では、変分法は、学習目標を用いて、後続分布を再帰的に更新し、それ以前の推定値に近づき続けることを制約することで、この問題に対処する。
しかし, 逐次再帰に対する近似誤差が混在しているため, これらの手法は有効でない可能性がある。
これを軽減するために,複数回の先行推定の正規化効果を統合した新たな学習目標を提案する。
強化学習と神経科学の一般的な学習メカニズムである時間差法とこれらの目的との関係を明らかにする。
CLベンチマークの挑戦実験により,本手法は破滅的投機を効果的に軽減し,強力な変分CL法より優れていることが示された。
関連論文リスト
- STAR: Stability-Inducing Weight Perturbation for Continual Learning [4.623295991242981]
継続的学習における重要な課題は、モデルが新しいタスクを学ぶために更新されると、破滅的な忘れがちになることです。
継続学習中の忘れを軽減するための一般的なアプローチは、事前に確認されたサンプルの小さなバッファを保持し、トレーニング中にそれらを再生することである。
モデル予測のKL偏差を低減させる,最悪のパラメータ摂動を利用した新しい損失関数STARを提案する。
論文 参考訳(メタデータ) (2025-03-03T14:32:03Z) - Spurious Forgetting in Continual Learning of Language Models [20.0936011355535]
大規模言語モデル(LLM)の最近の進歩は、継続学習において複雑な現象を呈している。
大規模な訓練にもかかわらず、モデルは大幅な性能低下を経験する。
本研究では,このような性能低下が,真の知識喪失よりもタスクアライメントの低下を反映していることが示唆された。
論文 参考訳(メタデータ) (2025-01-23T08:09:54Z) - Continual Task Learning through Adaptive Policy Self-Composition [54.95680427960524]
CompoFormerは構造ベースの連続トランスフォーマーモデルであり、メタポリシックネットワークを介して、以前のポリシーを適応的に構成する。
実験の結果,CompoFormerは従来の継続学習法(CL)よりも優れており,特にタスクシーケンスが長いことが判明した。
論文 参考訳(メタデータ) (2024-11-18T08:20:21Z) - ICL-TSVD: Bridging Theory and Practice in Continual Learning with Pre-trained Models [103.45785408116146]
連続学習(CL)は、連続的に提示される複数のタスクを解決できるモデルを訓練することを目的としている。
最近のCLアプローチは、ダウンストリームタスクをうまく一般化する大規模な事前学習モデルを活用することで、強力なパフォーマンスを実現している。
しかし、これらの手法には理論的保証がなく、予期せぬ失敗をしがちである。
私たちは、経験的に強いアプローチを原則化されたフレームワークに統合することで、このギャップを埋めます。
論文 参考訳(メタデータ) (2024-10-01T12:58:37Z) - Continual Human Pose Estimation for Incremental Integration of Keypoints and Pose Variations [12.042768320132694]
本稿では,連続的な学習課題として,データセット間のポーズ推定を再構成する。
我々は、破滅的な忘れを緩和するための確立された正規化に基づく手法に対して、この定式化をベンチマークする。
提案手法は,既存の正規化に基づく継続学習戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-09-30T16:29:30Z) - Train-Attention: Meta-Learning Where to Focus in Continual Knowledge Learning [15.475427498268393]
TAALM(Train-Attention-Augmented Language Model)は,トークンに対する重み付けを動的に予測・適用することにより,学習効率を向上させる。
我々は,TAALMがベースライン上での最先端性能を証明し,従来のCKLアプローチと統合した場合に相乗的互換性を示すことを示す。
論文 参考訳(メタデータ) (2024-07-24T01:04:34Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
本稿では,大規模言語モデルにおける機械学習評価の精度向上を図る。
評価指標の堅牢性と、競合する目標間のトレードオフという、2つの重要な課題に対処します。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Multimodal Parameter-Efficient Few-Shot Class Incremental Learning [1.9220716793379256]
FSCIL(Few-Shot Class Incremental Learning)は、いくつかの学習セッションで限られたトレーニング例が利用できる、挑戦的な継続的学習タスクである。
このタスクを成功させるためには、数発のトレーニングセットにおけるバイアス分布に起因する新しいクラスを過度に適合させるのを避ける必要がある。
CPE-CLIPは、最先端の提案と比較してFSCILの性能を著しく改善すると同時に、学習可能なパラメータの数やトレーニングコストを大幅に削減する。
論文 参考訳(メタデータ) (2023-03-08T17:34:15Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
オンライン連続学習(OCL)は、非定常データストリームからモデル学習を可能とし、新たな知識を継続的に獲得し、学習した知識を維持することを目的としている。
主な課題は、"破滅的な忘れる"問題、すなわち、新しい知識を学習しながら学習した知識を十分に記憶できないことにある。
論文 参考訳(メタデータ) (2022-11-10T05:29:43Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
テストタイムでの計画(IMPLANT)は、模倣学習のための新しいメタアルゴリズムである。
IMPLANTは,標準制御環境において,ベンチマーク模倣学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-07T17:16:52Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。